

NewgenONE OmniDocs

Configuration and Deployment Guide for AWS

Version: 11.3

Newgen Software Technologies Ltd.
This document contains propriety information of NSTL. No part of this document may be reproduced, stored, copied, or

transmitted in any form or by any means of electronic, mechanical, photocopying, or otherwise, without the consent of

NSTL.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 2

Table of contents
1 Preface ... 4

1.1 Revision history .. 4
1.2 Intended audience ... 4
1.3 Documentation feedback ... 4
1.4 Third-party product information .. 4

2 Configuring AWS Kubernetes cluster.. 5
2.1 Creating an IAM user.. 5
2.2 Creating VPC ... 7
2.3 Creating subnets .. 9
2.4 Creating internet gateway ... 12
2.5 Creating route table ... 13
2.6 Creating an IAM role .. 15
2.7 Creating security group .. 17
2.8 Creating EKS cluster ... 17
2.9 Creating key pair .. 19
2.10 Provisioning Kubernetes worker nodes using cloud formation ... 20
2.11 Adding inbound rule in EC2 instance ... 23
2.12 Enabling worker node to join EKS cluster .. 25
2.13 Running Kubectl from local machine ... 27
2.14 Creating EFS ... 27
2.15 Mounting EFS to worker nodes .. 30
2.16 Configuring Kubernetes dashboard ... 30
2.17 Configuring AWS load balancer controller ... 30
2.18 Configuring AWS Elastic Redis cache ... 34
2.19 Registering domain using route-53 .. 39
2.20 Generating SSL certificate against registered domain ... 41
2.21 Cluster autoscaler .. 46

2.21.1 Node group IAM policy ...46
2.21.2 Updating auto scaling group ...46
2.21.3 Deploying cluster AutoScaler ..48
2.21.4 Viewing cluster AutoScaler logs ..49

2.22 Setting CloudWatch container insights .. 50
3 Deploying OmniDocs containers .. 50

3.1 Prerequisites .. 50
3.2 Deliverables .. 51

3.2.1 Docker images ..51
3.2.2 Configuration files ..52
3.2.3 YAML files ...52

3.3 Product's YAML files changes ... 54
3.4 AWS Load Balancer Controller YAML files changes ... 59
3.5 Configuration files changes .. 61

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 3

3.5.1 Prerequisites ...61
3.5.2 OmniDocsWeb changes ..61
3.5.3 Wrapper changes ..65
3.5.4 AlarmMailer changes ..66
3.5.5 LDAP changes ...67
3.5.6 SSO changes ..73
3.5.7 Scheduler changes ..73
3.5.8 ThumbnailManager changes ..74
3.5.9 TEM changes ...75
3.5.10 EasySearch changes ..75
3.5.11 WOPI changes ...77
3.5.12 OmniScanWeb changes ..80

3.6 Deploying containers ... 81
3.7 Creating cabinet and data source .. 85

3.7.1 Getting started with OSA ..85
3.7.2 Registering JTS server ...87
3.7.3 Connecting OSA to the JTS server ...89
3.7.4 Creating cabinet..91
3.7.5 Associating cabinet ...96
3.7.6 Creating data source .. 101
3.7.7 Registering cabinet .. 121
3.7.8 Creating Site and Volume .. 122

3.8 EasySearch Post-Deployment changes .. 129
3.9 Registering cabinet in OmniScanWeb .. 130
3.10 Creating secret manager policy and secrets .. 133

3.10.1 Creating secret for Alarm Mailer ... 134
3.10.2 Creating secret for LDAP .. 135
3.10.3 Creating secret for TEM ... 136
3.10.4 Creating secret for EasySearch .. 137

4 Configuring AWS CodePipeline for container deployment on EKS .. 139
4.1 Overview .. 140
4.2 Architecture of CICD pipeline ... 140
4.3 Configuring AWS Elastic container registry .. 141
4.4 Push and Pull Docker images to or from AWS ECR .. 143
4.5 Configuring AWS CodePipeline .. 146

4.5.1 Creating IAM policy and IAM role .. 146
4.5.2 Creating AWS CodeCommit repository ... 149
4.5.3 Creating AWS CodeBuild project ... 150
4.5.4 Creating AWS CodePipeline ... 155

4.5.4.1 Configuring AWS CodePipeline for Dev Stage .. 156
4.5.4.2 Configuring notification.. 164
4.5.4.3 Configuring AWS CodePipeline for UAT stage .. 170
4.5.4.4 Configuring AWS CodePipeline for production stage... 182

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 4

1 Preface
This guide describes the deployment of OmniDocs 11.3 deliverables like OmniDocs Docker images

and their required configuration files on the AWS Elastic Kubernetes Service (EKS).

1.1 Revision history
Revision Date Description

July 2024 Initial publication

1.2 Intended audience
This guide is intended for System Administrators, developers, and all other users who are seeking

information on the deployment of OmniDocs 11.3 containers on AWS Kubernetes Services. The

reader must have the administrative rights on the machine.

1.3 Documentation feedback
To provide feedback or any improvement suggestions on technical documentation, write an email

to docs.feedback@newgensoft.com.

To help capture your feedback effectively, share the following information in your email.

• Document name

• Version

• Chapter, topic, or section

• Feedback or suggestions

1.4 Third-party product information
This guide contains third-party product information about configuring Amazon Web Services (AWS)

CodePipeline for Container Deployment on EKS and AWS Kubernetes Cluster. Newgen Software Technologies

Ltd does not claim any ownership on such third-party content. This information is shared in this guide only

for convenience of our users and could be an excerpt from the AWS documentation. For latest information

on configuring the AWS Kubernetes Cluster and AWS CodePipeline refer to the AWS documentation.

mailto:docs.feedback@newgensoft.com

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 5

2 Configuring AWS Kubernetes cluster
This chapter describes the configuration of AWS Kubernetes Service, follow the below sections for

procedural details.

2.1 Creating an IAM user
Configure the AWS Kubernetes Cluster to create an IAM user instead of using the root user from

the Amazon Management Console.

Perform the below steps to create an IAM user:

1. Sign in to the AWS Management Console using the root user and open the IAM console in

Services.

2. Select the Users and then select Add User in the navigation panel.

3. Enter the username for the new user. This is the sign-in name for AWS.

4. Select the user's access type. You can select programmatic access or access to the AWS

Management Console, and both.

• Select Programmatic access if the users require access to the API, AWS CLI, or Tools for

Windows PowerShell. This creates an access key for each new user. You can view or

download the access keys once you reach the final page.

• Select AWS Management Console access if the users require access to the AWS

Management Console. This creates a password for each new user.

5. For the Console password, select any of the following:

• Auto-generated password: Each user gets a randomly generated password that meets the

account password policy in effect (if any). Once complete, you can view or download the

passwords.

• Custom password: The password you entered is assigned to each user.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 6

Figure 2.1

6. Click Next: Permissions. The Set Permissions screen appears.

7. Select the Attach existing policies directly and select the Administrator Access policy.

Figure 2.2

8. Click Next. The user is created successfully.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 7

2.2 Creating VPC
Perform the below steps to create VPC (Virtual Private Cloud):

1. Sign in to the AWS Management Console using the root user and open the VPC in Services.

2. Select Your VPC and click Create VPC in the navigation pane.

3. Select Resources to create VPC Only in the Create VPC.

4. Specify the user-defined VPC name in the Name Tag field.

5. Specify the IPv4 CIDR block as 10.0.0.0/16 and click Create.

Figure 2.3

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 8

6. In the VPC, go to Action and click Edit DNS hostnames.

Figure 2.4

7. Select the Enable checkbox to enable DNS Hostnames.

8. Click Save Changes.

Figure 2.5

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 9

2.3 Creating subnets
This section contains information on creating three subnets for each availability zone in the

Mumbai region for High Availability.

Perform the below steps to create subnets:

1. In VPC Dashboard, go to the Subnets and Create Subnet.

2. Select the created VPC in the VPC combo box.

3. In Subnet settings, specify the user-defined subnet name in the Subnet name field.

4. Select the ap-south-1a in the Availability Zone.

5. Specify the 10.0.1.0/24 in the IPv4 CIDR block.

6. Create two more subnets for other availability zones: ap-south-1b and ap-south-1c by clicking

Add new subnet.

7. Click Create subnet.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 10

Figure 2.6

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 11

8. After creating subnets, Edit all subnet settings.

9. Select one subnet.

10. Go to the Action and Edit subnet settings.

Figure 2.7

11. In the Auto-assign IP settings, Enable auto-assign public IPv4 address.

12. Click Save to save subnet settings.

Figure 2.8

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 12

2.4 Creating internet gateway
This section explains how to create an Internet Gateway for the public Route Table. The creation of

the Route Table is described in the section create a route table.

NOTE:

To use a private Route Table, you need to create Nat Gateway which cost up to $40.

Perform the below steps to create an Internet Gateway:

1. In VPC Dashboard, go to the Internet Gateways and click Create internet gateway.

2. Specify the user-defined name in the Name tag field and click Create.

Figure 2.9

3. Select the created internet gateway.

4. Select the Attach to VPC option in the Actions menu.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 13

5. Select the created VPC and click Attach.

Figure 2.10

2.5 Creating route table
Perform the below steps to create the Route table:

1. In VPC Dashboard, go to the Route Tables and click Create route tables.

2. Specify the user-defined route table name in the Name tag field.

3. Select the created VPC and click Create.

Figure 2.11

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 14

4. Select the created route table.

5. Go to the Routes tab and click Edit Route.

6. To provide internet access to a created route table, add a new route and specify 0.0.0.0/0 in

the Destination field.

7. Select the created Internet gateway in the Target field.

8. Click Save routes.

Figure 2.12

9. Select the created route table.

10. Go to Subnet Associations and click Edit subnet associations.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 15

11. Select the created subnets for all availability zones for the Mumbai region.

Figure 2.13

2.6 Creating an IAM role
Before creating a Kubernetes Cluster, you must create an IAM role that Kubernetes can assume to

create AWS resources.

For example, when a load balancer is created, Kubernetes assumes the role to create an Elastic

Load Balancing load balancer in your account. This can be done at one time only and can be used

for multiple EKS clusters.

Perform the below steps to create an IAM Role:

1. Go to IAM Dashboard.

2. Go to the Roles and click Create role.

3. Select EKS from the list of services.

4. Select EKS Cluster to Allows access to other AWS service resources that are required to

operate clusters managed by EKS for your use case.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 16

5. Click Next: Permissions.

Figure 2.14

6. Click Next: Tags.

7. Click the Next: Review.

8. Specify the user-defined role name given under review and then click Create role.

Figure 2.15

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 17

2.7 Creating security group
It is required to create a Security Group for the EKS cluster.

Perform the below steps to create a Security Group:

1. In the VPC Dashboard, go to the Security Groups and click Create security group.

2. On the Create security group tab, specify the user-defined security group name and description.

3. Select the created VPC and click Create.

2.8 Creating EKS cluster
Before creating the EKS Cluster, you must sign in to the AWS Management Console using an IAM

user. It is not recommended to use the root user for EKS Cluster creation.

Perform the below steps to create an AWS Kubernetes Cluster:

1. Go to EKS Service and click the Next step.

Figure 2.16

2. Specify the following in the Create Cluster:

• Cluster name: Enter the User-defined name.

• Kubernetes version: Select default that is, 1.21.

• Role name: Select the created IAM role.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 18

3. Click Next.

Figure 2.17

4. Specify the following in the Networking info:

• VPC: Select the created VPC.

• Subnets: Select all the subnets of the Mumbai region.

• Security groups: Select the created security group.

• Cluster endpoint access: Enable both Private access and Public access.

5. Once all the details are specified, click Next.

Figure 2.18

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 19

6. On the Configure tab, click Next.

7. In the Review tab, click Create and create a page.

NOTE:

Ensure that the cluster status is ACTIVE.

2.9 Creating key pair
Perform the below steps to create a key pair:

1. Go to EC2 Dashboard.

2. Click Key Pairs.

3. Click Create Key Pair.

4. Specify the Key pair name in the Create Key Pair panel.

Figure 2.19

5. With the click of Create, a <KeyPair Name>.pem gets downloaded. Keep it safe as it is required

for the SSH connection.

NOTE:

Convert this .pem file to .ppk for SSH connection through the local machine.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 20

2.10 Provisioning Kubernetes worker nodes using cloud

formation
Perform the below steps to provide provision Kubernetes worker nodes using Cloud Formation:

1. Download the latest version of the AWS CloudFormation template.

curl -o amazon-eks-nodegroup.yaml https://raw.githubusercontent.com/awslabs/amazon-eks-

ami/master/amazon-eks-nodegroup.yaml

NOTE:

To download the latest YAML file, refer to the below link:

https://docs.aws.amazon.com/eks/latest/userguide/launch-workers.html

2. Open the AWS CloudFormation console.

3. Go to Create Stack under With new resources (standard).

4. To Specify a template, select Upload a template file and then select Select file. Select the

amazon-eks-nodegroup.yaml file that you downloaded earlier and then click Next.

Figure 2.20

5. On the Specify stack details, specify the following details:

• Stack name: Select a stack name for your AWS CloudFormation stack.

• ClusterName: Enter the name that you used when you created your Amazon EKS cluster.

This name must exactly match the name as per the given name.

• ClusterControlPlaneSecurityGroup: Select the SecurityGroups of EKS Cluster.

https://raw.githubusercontent.com/awslabs/amazon-eks-ami/master/amazon-eks-nodegroup.yaml
https://raw.githubusercontent.com/awslabs/amazon-eks-ami/master/amazon-eks-nodegroup.yaml

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 21

• NodeGroupName: Enter a name for your node group. This name can be used later to

identify the Auto Scaling node group that is created for your worker nodes.

• NodeAutoScalingGroupMinSize: Enter the minimum number of nodes that your worker

node Auto Scaling group can scale in them.

• NodeAutoScalingGroupDesiredCapacity: Enter the desired number of nodes to scale to

when your stack is created.

• NodeAutoScalingGroupMaxSize: Enter the maximum number of nodes that your worker

node Auto Scaling group can scale out in them.

• NodeInstanceType: Select an instance type for your worker nodes.

• NodeImageIdSSMParam: This is a pre-populated optimized Amazon Linux AMI ID for a

Kubernetes version. Change the Kubernetes minor version supported with EKS Cluster.

For example, earlier you had created an EKS Cluster with v1.21. You must use the same

version here as shown below:

/aws/service/eks/optimized-ami/1.21/amazon-linux-2/recommended/image_id

• NodeImageId: This is an optional field. If you are using your own custom AMI, then enter a

node AMI ID otherwise leave it blank.

• NodeVolumeSize: Specify a node volume size for your nodes, in GiB.

• KeyName: Enter the name of an Amazon EC2 SSH key pair that you can use to connect using

SSH into your worker nodes after the launch.

6. After specifying the above details, click Next.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 22

Figure 2.21

7. Click Next and configure stack options.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 23

8. In the Review tab, review all the specified details and select the checkbox I acknowledge that

AWS CloudFormation might create IAM resources.

9. Click Create stack.

Figure 2.22

Ensure that the creation status becomes CREATE_COMPLETE now.

NOTE:

When your stack has finished creating, select it on the console, and select the Outputs tab. Record the

NodeInstanceRole for the node group that was created. You need this when you configure your Amazon EKS worker

nodes.

2.11 Adding inbound rule in EC2 instance
Perform the below steps to add the Inbound rule in an EC2 instance:

1. Go to VPC Dashboard.

2. Select Security Groups and select the security group mapped with EKS Node/EC2 Instance.

3. Go to the Inbound Rules tab and click Edit rules.

4. Click Add a new Rule and specify 22 in the Port Range field.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 24

5. Select My IP or any other IP range from where you want to access the ssh of worker nodes in

the Source field.

Figure 2.23

6. Connect this EC2 instance from the local machine using the default user name ec2-user” and

SSH key pair as created earlier.

Figure 2.24

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 25

2.12 Enabling worker node to join EKS cluster
Perform the following to enable the Worker Node/EC2 instance to EKS Cluster:

1. Connect to the worker node through the Putty.

2. Install or Update AWS Cli on the worker node by using the below URL:

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html

NOTE:

AWS cli version 2.x is required. Check the AWS cli version using the below command:

aws --version

3. Install the Kubectl on the worker node by using the below URL:

https://docs.aws.amazon.com/eks/latest/userguide/install-kubectl.html

4. Execute the below command to the worker node:
aws configure

5. After the above command is executed, specify the following details:

• Access Key ID: Provide the Access key ID of the user which is used to create the EKS Cluster.

• Secret Access Key: Provide the SecretKey ID of the user which is used to create the EKS

Cluster.

• Region: ap-south-1

• Output: JSON

Figure 2.25

6. Now, execute the below command:
aws eks --region <RegionName> update-kubeconfig --name <ClusterName>

For example,
aws eks --region ap-south-1 update-kubeconfig --name EKSCluster

7. To download the configuration map, execute the below command:
curl -o aws-auth-cm.yaml https://amazon-eks.s3.us-west-

2.amazonaws.com/cloudformation/2020-10-29/aws-auth-cm.yaml

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/eks/latest/userguide/install-kubectl.html

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 26

NOTE:

To download the latest S3 URL, refer to the below link:

https://docs.aws.amazon.com/eks/latest/userguide/launch-workers.html

8. After the above command gets executed, a file aws-auth-cm.yaml is downloaded to the worker

node.

9. Open this file in the edit mode and replace the <ARN of instance role (not instance profile)>

snippet with the NodeInstanceRole value recorded in the procedure.

10. Save the file.

Figure 2.26

11. Execute the below command on the worker node.
kubectl apply -f aws-auth-cm.yaml

Check the status of your nodes and wait for them to reach the Ready status.
kubectl get nodes --watch

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 27

2.13 Running Kubectl from local machine
Before running the kubectl commands from your local machine, ensure that you have the following

prerequisites:

• kubectl: https://docs.aws.amazon.com/eks/latest/userguide/install-kubectl.html.

• aws-cli: https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html.

• Execute the below command to the worker node:
aws configure

• Once the above command gets executed, specify the following details:

➢ Access Key ID: Provide the Access key ID of the user which is used to create the EKS

Cluster.

➢ Secret Access Key: Provide the SecretKey ID of the user which is used to create the EKS

Cluster.

➢ Region: ap-south-1

➢ output: JSON

• Execute the below command:
aws eks --region <RegionName> update-kubeconfig --name <Cluster_Name>

For example,
aws eks --region ap-south-1 update-kubeconfig --name EKSCluster

• Execute kubectl commands from our machine.

For example,
kubectl get pods

2.14 Creating EFS
Perform the below steps to create an AWS Elastic File System (EFS) storage:

1. Go to EFS Service and select Create file system.

2. In the Name - optional, specify the user-defined name for your file system that is, omnidocs-

efs.

3. In the Virtual Private Cloud (VPC), select the created VNC for your EKS cluster.

4. In the Availability and Durability, select Regional.

https://docs.aws.amazon.com/eks/latest/userguide/install-kubectl.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 28

5. Click Create.

Figure 2.27

6. Open the created EFS and switch to the Access Point tab and select Create access point.

Figure 2.28

7. In the Name – optional, specify the user-defined name that is, omnidocs-efs-accesspoint.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 29

8. In the Root directory path, use /mnt/efs [This directory path must exist on EC2 worker nodes,

else, create it if does not exist].

9. In the POSIX user –optional, specify 1000 in the User ID, Group ID, and Secondary group IDs

textboxes.

10. In the Root directory creation permissions – optional, specify 1000 in the Owner user ID and

Owner group ID. And keep the default POSIX permission 0755.

11. Click Create access point.

NOTE:

The Worker node’s Security group must be added to the EFS Network.

Figure 2.29

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 30

2.15 Mounting EFS to worker nodes
To mount the Elastic File System (EFS) with Worker nodes, install the amazon-efs-utils using the

below command:
sudo yum install -y amazon-efs-utils

Add the below line to the /etc/fstab file on each Worker Nodes:
fs-8241f853.efs.ap-south-1.amazonaws.com:/ /mnt/efs efs

_netdev,tls,accesspoint=fsap-0bbac155fbd3ad350 0 0

Where,

fs-8241f853.efs.ap-south-1.amazonaws.com =Elastic File System DNS Name

/mnt/efs=Existing directory structure of EC2 instance [Create if does not exist]

fsap-0bbac155fbd3ad350= Attached Access Point to the EFS

Execute the below command:
sudo mount –a

NOTE:

You must mount EFS to all the running worker nodes.

2.16 Configuring Kubernetes dashboard
Use the below URL to configure the Kubernetes Dashboard:

https://docs.aws.amazon.com/eks/latest/userguide/dashboard-tutorial.html

Once Kubernetes Dashboard is configured, execute the below command:
kubectl proxy

Use the below URL to open the Kubernetes Dashboard:

http://localhost:8001/api/v1/namespaces/kubernetes-dashboard/services/https:kubernetes-

dashboard:/proxy/#!/login

2.17 Configuring AWS load balancer controller
The AWS Load Balancer Controller manages AWS Elastic Load Balancers for a Kubernetes cluster. It

creates an application load balancer when you create a Kubernetes ingress. The Ingress resource

configures the ALB to route HTTP or HTTPS traffic to different pods within the cluster.

https://docs.aws.amazon.com/eks/latest/userguide/dashboard-tutorial.html
http://localhost:8001/api/v1/namespaces/kubernetes-dashboard/services/https:kubernetes-dashboard:/proxy/#!/login
http://localhost:8001/api/v1/namespaces/kubernetes-dashboard/services/https:kubernetes-dashboard:/proxy/#!/login

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 31

Perform the below steps to configure the AWS Load Balancer Controller:

1. Create an IAM OIDC provider and associate it with your cluster using the below commands:
eksctl utils associate-iam-oidc-provider \

 --region <region-code> \

 --cluster <cluster-name> \

 --approve

NOTE:

If you don’t have the eksctl version 0.25.0 or later installed, then complete the installation using the below URL:

https://docs.aws.amazon.com/eks/latest/userguide/eksctl.html#installing-eksctl

2. Download an IAM policy for the AWS Load Balancer Controller that allows it to make calls to

AWS APIs on your behalf using the below command:
curl -o iam_policy.json https://raw.githubusercontent.com/kubernetes-sigs/aws-

load-balancer-controller/v2.3.1/docs/install/iam_policy.json

NOTE:

To get the latest iam-policy, refer to the below link:

https://docs.aws.amazon.com/eks/latest/userguide/aws-load-balancer-controller.html

3. Create an IAM policy called AWSLoadBalancerControllerIAMPolicy using the downloaded

policy.
aws iam create-policy --policy-name AWSLoadBalancerControllerIAMPolicy --

policy-document file://iam_policy.json

4. Create an IAM role for the AWS Load Balancer Controller and attach the role to the service

account created in the further steps.

Perform the below steps to create the IAM role:

1. Open the IAM console and select Create Roles.

2. In the Select type of trusted entity section, select Web identity.

3. In the Select a web identity provider, specify the following:

i. In the Identity provider, select the URL for your cluster.

ii. In the Audience, select sts.amazonaws.com.

iii. Click Next: Permissions.

4. In the Attach Policy section, select the policy AWSLoadBalancerControllerIAMPolicy

5. Specify the role name as AmazonEKSLoadBalancerControllerRole and then select Create Role.

6. After the role is created, select the role in the console to open it for editing.

7. Select the Trust relationships tab and select the Edit trust policy.

i. Edit the OIDC provider suffix and change it from aud to: sub.

https://docs.aws.amazon.com/eks/latest/userguide/eksctl.html#installing-eksctl
https://docs.aws.amazon.com/eks/latest/userguide/aws-load-balancer-controller.html

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 32

ii. Replace sts.amazonaws.com with the service account ID given in the quotes below. (This

service account id is created in further steps).
“system:serviceaccount:kube-system:aws-load-balancer-controller"

iii. The resulting line in policy must be as follows:
"oidc.eks.region-

code.amazonaws.com/id/EXAMPLED539D4633E53DE1B716D3041E:sub":

"system:serviceaccount:SERVICE_ACCOUNT_NAMESPACE:SERVICE_ACCOUNT_NAME"

For example,

"oidc.eks.ap-south-

1.amazonaws.com/id/C9D4F2E6E31D3880DCE2BEFEA007C4CB:sub": "

“system:serviceaccount:kube-system:aws-load-balancer-controller"

iv. Select Update policy to finish.

NOTE:

Take note of the Role ARN of the newly created role AmazonEKSLoadBalancerControllerRole.

8. Create a Kubernetes service account named aws-load-balancer-controller in the kube-system

namespace. To create the same, save the following contents to a file that’s named as aws-load-

balancer-controller-service-account.yaml, replacing the created role ARN.
apiVersion: v1

kind: ServiceAccount

metadata:

 labels:

 app.kubernetes.io/component: controller

 app.kubernetes.io/name: aws-load-balancer-controller

 name: aws-load-balancer-controller

 namespace: kube-system

 annotations:

 eks.amazonaws.com/role-arn:

arn:aws:iam::273163610351:role/AmazonEKSLoadBalancerControllerRole

NOTE:

To download the latest service account YAML contents, refer to the below link:

https://docs.aws.amazon.com/eks/latest/userguide/aws-load-balancer-controller.html

9. Execute the following command to create a Kubernetes Service Account:
kubectl apply -f aws-load-balancer-controller-service-account.yaml

https://docs.aws.amazon.com/eks/latest/userguide/aws-load-balancer-controller.html

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 33

10. Install the cert-manager using the following command:
kubectl apply --validate=false -f https://github.com/jetstack/cert-

manager/releases/download/v1.5.4/cert-manager.yaml

11. Download the controller specification using the below command:
curl -Lo v2_4_1_full.yaml https://github.com/kubernetes-sigs/aws-load-

balancer-controller/releases/download/v2.4.1/v2_4_1_full.yaml

12. Make the following edit in v2_4_1_full.yaml file.

a. Delete the kind: ServiceAccount section of the file.

b. Replace your-cluster-name in the Deployment spec section of the file with the name of your

cluster.

For example,
spec:

 containers:

 - args:

 - --cluster-name=<ClusterName>

 - --ingress-class=alb

c. Apply the file.
kubectl apply -f v2_4_1_full.yaml

NOTE:

If a user is facing issues like no matches for kind IngressClassParams in version elbv2.k8s.aws/v1beta1 then execute

the below command to fix this issue:

sudo yum install git -y

kubectl apply -k "github.com/aws/eks-charts/stable/aws-load-balancer-

controller//crds?ref=master"

kubectl apply -f v2_4_1_full.yaml

13. Use the below command to verify the status of the AWS Load Balancer Controller:
kubectl get deployment -n kube-system aws-load-balancer-controller

14. Use the below command to check the logs of the AWS Load Balancer Controller:
kubectl logs deployment.apps/aws-load-balancer-controller -n kube-system

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 34

2.18 Configuring AWS Elastic Redis cache
To configure the AWS Elastic Redis, perform the below steps:

1. Sign in to the AWS Management Console and open the ElasticCache console.

2. Select Get Started Now. If you already have an available cluster, select Create.

3. For the Cluster engine, select Redis.

4. Complete the Redis settings section as follows:

i. Cluster creation method – Configure and create a new cluster.

ii. Cluster mode – Select Disabled.

Figure 2.30

iii. Name – Enter the user-defined name.

iv. Description – Enter the description.

v. Location – Select the AWS Cloud.

vi. Multi-AZ – Select Enabled.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 35

Figure 2.31

vii. Engine Version – Select the latest version.

viii. Port – Keep the default port.

ix. Parameter Group – Keep the default parameter group.

x. Node Type – Select the node type that you want to use for this cluster.

xi. Number of replicas – Select the number of nodes you want for this cluster. For Multi AZ,

minimum 1 is required.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 36

Figure 2.32

xii. Create the subnet group and specify the following:

a. Name – Enter a unique name.

b. Description – Enter the description.

c. VPC ID – Select a VPC on which you have created EKS cluster.

d. Subnets – Select all subnets.

e. Availability zones placement – Keep this default that is, No Preference.

xiii. Click Next.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 37

Figure 2.33

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 38

xiv. Complete the Advance settings section as follows:

a. Encryption at rest – Keep this Disabled.

b. Encryption in transit – Keep this Disabled.

c. Security Group – Select the EKS worker node’s security group.

xv. Keep the other settings as default and click Next.

On the Review and create page, select Create to launch your Memcached cluster.

Figure 2.34

5. Review the settings and click Create to launch your Redis cluster.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 39

2.19 Registering domain using route-53
AWS ALB Ingress Controller creates an Application Load Balancer and routes the incoming requests

to the target Kubernetes services according to the host-based routing rules. Host-based routing is a

capability of ALB that redirects the user requests to the right service based on the request-host

header.

For example, we can set the rules as below:

• If URL is ibpsportal.aws.co.in then redirect to the iBPS Portal container.

• If URL is ibpsbam.aws.co.in then redirect to the iBPS BAM container.

To support host-based routing, you must register a domain and create a new record.

Perform the below steps to Record Set for each host path:

1. Register a domain using the AWS Route-53 service. Open the route53 service and go to domain

registration in the Domain section.

2. Once the domain is registered, it creates a Hosted Zone. Click the newly created Hosted Zone

list and then click Go to Record Sets.

Figure 2.35

3. Click Create Record Set. The Create Record Set dialog appears:

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 40

Figure 2.36

4. Enter the following details in the Create Record Set to create a new RecordSet.

i. Name: Enter the user-defined name.

ii. Type: Select type as A – IPv4-address.

iii. Alias: Select alias as Yes.

iv. Alias Target: Select the alias target as Load Balancer.

Figure 2.37

Now you can use this RecordSet as a host path for Ingress Controller. Thus, ALB is registered with a

Domain name.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 41

2.20 Generating SSL certificate against registered domain
This section explains how to generate an SSL certificate against the registered domain.

Prerequisite:

You must have a registered domain in Route53.

Perform the below steps to generate an SSL Certificate:

1. Go to the Certificate Manager given under the Services.

2. Click Request a certificate.

Figure 2.36

3. To Request a public certificate, select the type of certificate for ACM to provide.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 42

Figure 2.37

4. Add your registered domain name like omnidocs-aws.com.

5. Add another name to this certificate as *.<DOMAIN_NAME> like *.omnidocs-aws.com)

Figure 2.38

6. Select a validation method: Email validation.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 43

Figure 2.39

7. On the Add Tags, click Review.

Figure 2.40

8. Click Confirm and request.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 44

Figure 2.41

9. Click Continue. An approval mail is sent to the below recipients of the registered domain.

• Registrant Contact

• Administrative Contact

• Technical Contact

Figure 2.42

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 45

Figure 2.43

10. Once all the recipients approve the certificate, the certificate status gets changed from Pending

Validation to issue.

Figure 2.44

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 46

2.21 Cluster autoscaler
The Cluster AutoScaler requires additional IAM and resource tagging considerations that are given

in the following subsections:

2.21.1 Node group IAM policy
Create an IAM policy with the following JSON scripts and attach it to the Worker Node’s IAM Role.

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Action": [

 "autoscaling:DescribeAutoScalingGroups",

 "autoscaling:DescribeAutoScalingInstances",

 "autoscaling:DescribeLaunchConfigurations",

 "autoscaling:DescribeTags",

 "autoscaling:SetDesiredCapacity",

 "autoscaling:TerminateInstanceInAutoScalingGroup",

 "ec2:DescribeLaunchTemplateVersions"

],

 "Resource": "*",

 "Effect": "Allow"

 }

]

}

2.21.2 Updating auto scaling group
Perform the below steps to update the Auto Scaling Group:

1. Create an AMI of any worker node.

2. Go to the Auto Scaling Groups and click the created autoscaling group for this EKS Cluster.

Figure 2.38

3. Click the attached Launch Template.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 47

Figure 2.39

4. Select the created Launch Template and select the Modify Template (Create new version)

option from the Actions menu.

Figure 2.40

5. Select the created AMI and click Create template version.

6. Go back to the Auto Scaling Group and click Edit given in the right panel.

Figure 2.41

7. Select the Latest version and click Update.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 48

Figure 2.42

8. The Cluster AutoScaler requires the following tags on your node group that is Auto Scaling

groups so it can be auto-discovered.

Key Value

k8s.io/cluster-autoscaler/<cluster-name> owned

k8s.io/cluster-autoscaler/enabled True

2.21.3 Deploying cluster AutoScaler
Perform the below steps to deploy the Cluster AutoScaler:

1. Deploy the Cluster Autoscaler to your cluster using the below command:
kubectl apply -f

https://raw.githubusercontent.com/kubernetes/autoscaler/master/cluster-

autoscaler/cloudprovider/aws/examples/cluster-autoscaler-autodiscover.yaml

2. Add the cluster-autoscaler.kubernetes.io/safe-to-evict annotation to the deployment using the

below command:
kubectl -n kube-system annotate deployment.apps/cluster-autoscaler cluster-

autoscaler.kubernetes.io/safe-to-evict="false"

3. Edit the Cluster AutoScaler deployment using the below command:
kubectl -n kube-system edit deployment.apps/cluster-autoscaler

• Edit the cluster-autoscaler container command to replace <YOUR CLUSTER NAME> with

your cluster's name, and add the following options:

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 49

➢ --balance-similar-node-groups

➢ --skip-nodes-with-system-pods=false

4. Save and close the file to apply the changes.

For Example:
spec:

containers:

 - command:

 - ./cluster-autoscaler

 - --v=4

 - --stderrthreshold=info

 - --cloud-provider=aws

 - --skip-nodes-with-local-storage=false

 - --expander=least-waste

 - --node-group-auto-discovery=asg:tag=k8s.io/cluster-

autoscaler/enabled,k8s.io/cluster-autoscaler/<YOUR CLUSTER NAME>

 - --balance-similar-node-groups

 - --skip-nodes-with-system-pods=false

5. Open the below URL in a web browser and find the latest Cluster AutoScaler version that

matches your cluster's Kubernetes major and minor versions.

For example, if your cluster's Kubernetes version is 1.21 then find the latest Cluster AutoScaler

release that begins with 1.21. Record the semantic version number (1.21.n) for that release to

use in the further step.

https://github.com/kubernetes/autoscaler/releases.
6. Set the Cluster AutoScaler image tag to the version that you have recorded.

7. Use the below command and replace 1.21.n with your value.
kubectl -n kube-system set image deployment.apps/cluster-autoscaler cluster-

autoscaler=us.gcr.io/k8s-artifacts-prod/autoscaling/cluster-

autoscaler:v1.21.n

2.21.4 Viewing cluster AutoScaler logs
Once you have deployed the Cluster Autoscaler, you can view the logs and verify that it is

monitoring your cluster load.

You can view your Cluster AutoScaler logs using the below command:
kubectl -n kube-system logs -f deployment.apps/cluster-autoscaler

https://github.com/kubernetes/autoscaler/releases

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 50

2.22 Setting CloudWatch container insights
Container Insights is a fully managed CloudWatch service and is used to collect, aggregate, and

summarize metrics and logs of containerized applications deployed on ECS or EKS service. The

metrics include the utilization of resources such as CPU, memory, disk, and network.

Container insights also provide diagnostic information, such as container restart failures, to help

you isolate issues and resolve them quickly. The metrics that Container Insights collects are

available in CloudWatch automatic dashboards

Perform the below steps to set up the CloudWatch container insights:

1. Attach the below policy to the IAM role of your worker nodes:

• CloudWatchAgentServerPolicy

2. Execute the below command to deploy container insights on the EKS cluster:
curl https://raw.githubusercontent.com/aws-samples/amazon-cloudwatch-

container-insights/latest/k8s-deployment-manifest-templates/deployment-

mode/daemonset/container-insights-monitoring/quickstart/cwagent-fluentd-

quickstart.yaml | sed

"s/{{cluster_name}}/CLUSTER_NAME/;s/{{region_name}}/REGION_NAME/" | kubectl

apply -f -

In the above command, change the CLUSTER_NAME and REGION_NAME as required.

3 Deploying OmniDocs containers
This chapter describes the deployment of OmniDocs containers on AWS. Refer to the below sub-

sections for procedural details.

3.1 Prerequisites
To deploy OmniOMS containers, the AWS Elastic Kubernetes Service must already be configured,

and its Worker nodes must be in the ready state.

NOTE:

Refer to the Configuration of AWS Kubernetes Cluster for the configuration of AWS Elastic Kubernetes Service.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 51

3.2 Deliverables
Newgen has isolated the product suite into multiple Docker containers to enable the independent

scalability of each Docker container. This separation is done based on the product's usability. At a

broad level, Web components and EJB components are isolated for deployment in separate

container instances. Web components is deployed on the underlying web server JBoss WebServer

6.0.x. EJB components is deployed on the underlying application server JBoss EAP 7.4.x. Newgen

has released multiple Docker images for the different product suites along with some configuration

files for data persistence, YAML files for deployment, and some documentation for end-to-end

configurations and deployments.

The followings are the list of deliverables:

• Docker Images

• Configuration Files

• YAML Files

3.2.1 Docker images
The following 7 Docker images are delivered for the initial product deployment:

• OmniDocs Web Components

• OmniDocs Web Service Components

• OmniDocs EJB Components

• OmniDocs Add-on Services (Wrapper, AlarmMailer, Scheduler, ThumbnailManager and

LDAP)

• EasySearch (Apache Manifold only)

• Text Extraction Manager or Full-Text Search (TEM/FTS)

• OmniScan Web Components

• OmniDocs WOPI

NOTE:

These Docker images can be delivered to a private Docker repository like AWS ECR (Elastic Container Registry) or in the

form of compressed files that can be shared over the FTP or similar kind of media.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 52

3.2.2 Configuration files
Configuration files are dynamic in nature and data is written at runtime. Database details in

configuration files such as Server.xml and standalone.xml are written at runtime. These types of

files must be kept outside the container to persist the data. Here, AWS EFS is used to persist

configuration files.

The following configuration files are shared for OmniDocs Docker images:

• OmniDocsWeb

• OmniDocsEjb

• ODServices

• EasySearch

• TEM

• OmniscanWeb7.0

• OmniDocs WOPI

3.2.3 YAML files
YAML files stands for “YAML Ain’t Markup Language”. It is a human-readable object configuration

file that is used to deploy and manage the objects on the Kubernetes cluster. In other words, it is a

manifest file that contains the deployment descriptor of Kubernetes containers. You can execute

YAML files using “kubectl apply –f <YAMLFile>” or use these files in AWS CodePipeline to deploy the

containers.

The following configuration files has shared for OmniOMS Docker images:

• OmniDocsWeb.yml

• OmniDocsWeb_Services.yml

• OmniDocsEJB.yml

• OmniDocsServices.yml

• EasySearch_ApacheOnly.yml

• TEM.yml

• OmniScanWeb7.0.yml

• OmniDocswopi.yml

• AWS_ALB-IngressController.yml

• buildspec.yml

• buildspec_EasySearch.yml

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 53

Here’s an example of a YAML file:

Figure 3.1

AWS_ALB-IngressController.yml is used for the ingress controller. An ingress controller is an object

running inside the Kubernetes cluster that is used to manage the host-based routing rules. For

example, you can set the host-based routing rules like if the URL is omnidocs.newgendocker.com

then the ingress controller redirects the user request to OmniDocs WEB containers and if the URL is

omniscan.newgendocker.com then it redirects the user request to the OmniScanWEB containers.

Buildspec.yml is used in AWS CodePipeline for deploying the containers on AWS Elastic Kubernetes

Service.

NOTE:
You can store the above YAML files in AWS CodeCommit Repo that is used by AWS CodePipeline.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 54

3.3 Product's YAML files changes
The changes in the Product’s YAML files are:

• Name: In the OmniDocsWeb.yml file, od110web is given as the default name of Kubernetes

objects - deployment, replicas, container, and service. You can change this name as per your

choice. While changing the name, ensure that this name is not more than 13 letters in

length and must contain small letters only. For example,

Figure 3.2

• Replica: In the OmniDocsWeb.yml file, the default replica is given as 1. That means only one

container is created after the deployment. You can increase this number as per our choice.

• Image: In the OmniDocsWeb.yml file, update the image location. By default, the below value

is given:

Here:

• REGISTRY_ID is the AWS account ID where AWS ECR (Elastic Container Registry) is

created.

• REGION is the AWS Region where AWS ECR (Elastic Container Registry) is created.

• REPOSITORY_NAME is the Omnidocs WEB Docker image name.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 55

• IMAGE_TAG is a Docker image’s tag name that you want to deploy.

As AWS CodePipeline is used to deploy Docker images, you do not need to update the image in

the YAML file as AWS CodePipeline updates these values at runtime.

• SecurityContext: In the OmniDocsWeb.yml file, SecurityContext [runAsNonRoot: true] is

defined. It means the OmniDocsWeb container can never be run with root privileges. If any

container tries to run with the root user, then Kubernetes stops its deployments.

Figure 3.3

• Resource request and limit: In the OmniDocsWeb.yml file, resource request and resource

limit parameters are defined. The request parameter specifies the minimum required

resources to run the particular container and the limit parameter specifies the maximum

resource limit that a container can use. In other words, a running container is not allowed to

use more than the resource limit you set.

Figure 3.4

Here, 1000m CPU = 1 Core CPU

The above-specified limit is the minimum required resource to run a container. If users are

increasing, then you must increase the limit range accordingly.

• VolumeMounts and Volume: Volume mounts and volumes are used to persist the data

outside the container so that whenever the container terminates due to any reason our data

is always persisted. In the OmniDocsWeb.yml file, we have persisted configuration files or

folders and log files.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 56

Figure 3.5

In volumeMounts, mountPath is a path inside the container that is being mounted. Here,

mountPath cannot be changed as this structure is predefined in a Docker container. The

name is a user-defined name that must be matched with the name specified in volumes.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 57

Figure 3.6

In volumes, the hostPath mounts a file or directory from the worker node’s file system into

the container. This path must exist in the worker node’s file system. The hostPath can be a

file path or folder path, you just need to define its type whether it is a File or Directory. In

this YAML file, some hostPath contains dynamic values whose value gets updated at

runtime.

• Ports: In the OmniDocsWeb.yml file, containerPort is specified as 8080. That means only

port 8080 is exposed outside the container and no other port is accessible from outside.

Figure 3.7

• ReadinessProbe: The kubelet uses the readiness probe to know when a container is ready to

start accepting traffic. Until unless the readiness probe is not succeeded, the container does

not serve the user requests.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 58

Figure 3.8

Here, until unless ip:port/omnidocs/web is not accessible through a browser, the container

does not accept the user request.

• LivenessProbe: Docker containers have healing power, if an application running inside the

container gets down due to any reason or becomes unresponsive then Kubernetes restarts

the application automatically inside the container. This feature is known as LivenessProbe in

Kubernetes.

Figure 3.9

• Environment variable: In the OmniDocsWeb.yml file, the JAVA_OPTS parameter is defined

that is used to set the heap size in the WEB container dynamically.

Figure 3.10

Ensure ‘-XX:MaxRAMPercentage’ is a parameter through which you can provide the available

memory to use as a max heap size to JVM. In the above example, 50% of total memory is

allocated as heap size.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 59

NOTE:

You can use the above guidelines to update other YAML Files that are as follows:

• OmniDocsWeb_Services.yml

• OmniDocsEJB.yml

• OmniDocsServices.yml

• EasySearch_ApacheOnly.yml

• TEM.yml

• OmniScanWeb7.0.yml

• OmniDocswopi.yml

3.4 AWS Load Balancer Controller YAML files changes
The AWS Load Balancer Controller creates an Application Load Balancer and routes the incoming

requests to the target Kubernetes services according to the host-based routing rules. Host-based

routing is a capability of ALB that redirects the user requests to the right service based on the request-

host header

For example, you can set the rules as below:

• If URL is omnidocs.newgendocker.com, then redirect to the OmniDocsWeb container.

• If URL is omniscan.newgendocker.com, then redirect to the OmniScanWeb container.

NOTE:

To support the host-based routing, we must register a domain, create a new RecordSet in Route-53 for each host-path

and generate the SSL certificate against the registered domain. Refer to the Configuration of AWS Kubernetes Cluster

section for the configuration of AWS ALB Ingress Controller, Route-53, and Certificate Manager.

• Once AWS ALB Ingress is configured, RecordSet is created in Route-53, and an SSL certificate

is generated. You must deploy the Ingress controller along with its ruleset using the YAML

file.

• Before deploying the same you need to update some settings in the AWS_ALB-

IngressController.yml file.

• To access your application using both the HTTP and HTTPS protocols, ensure that the below

annotation is added:

alb.ingress.kubernetes.io/listen-ports: '[{"HTTPS":443}, {"HTTP":80}]'

Figure 3.11

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 60

• To access your application using the HTTPS protocol only, update the annotation as below:

alb.ingress.kubernetes.io/listen-ports: '[{"HTTPS":443}]'

• Update the SSL certificate ARN generated from AWS Certificate Manager.

• If you want to open both the HTTP and HTTPS protocols and whenever the calls come to the

HTTP, it redirects to HTTPS, then make sure the below annotation is added:

alb.ingress.kubernetes.io/ssl-redirect: ‘443’

• Update the subnets and security groups associated with the Kubernetes Worker nodes.
alb.ingress.kubernetes.io/subnets: subnet-0a37ea6be439259a0,subnet-

0e3a0a6a7d3887eca,subnet-09ee1bc2c393de555

alb.ingress.kubernetes.io/security-groups: sg-0f4f4504892233a90

• In the above step, there are multiple host-based rules defined.

➢ omnidocs.newgendocker.com [Specified as a record set in Route-53]

If the host URL is omnidocs.newgendocker.com, then it redirects the user request to the

od110web container’s service which is running on port 8080. Here, od110web is the

name of the OmniDocsWeb container.

➢ omnidocswebservices.newgendocker.com [Specified as a record set in Route-53]

If the host URL is omnidocswebservices.newgendocker.com, then it redirects the user

request to the od110websvc container’s service which is running on port 8080. Here,

od110websvc is the name of the OmniDocs Web Service container.

➢ omnidocsconsole.newgendocker.com [Specified as a record set in Route-53]

If the host URL is omnidocsconsole.newgendocker.com, then it redirects the user request

to the od110ejb container’s service which is running on port 9990. Here, od110ejb is the

name of the OmniDocsEJB container.

➢ apachemanifold.newgendocker.com [Specified as a record set in Route-53]

If the host URL is apachemanifold.newgendocker.com then it redirects the user request

to the easysearch11 container’s service which is running on port 8345. Here,

easysearch11 is the name of the EasySearch container.

➢ omniscan.newgendocker.com [Specified as a record set in Route-53]

If the host URL is omniscan.newgendocker.com, then it redirects the user request to the

omniscan web container’s service which is running on port 8080. Here, omniscanweb is

the name of the OmniScan Web container.

• In this YAML file, you can change the host URL, ServiceName, ServicePort, and the name

name: alb-ingress as per your choice.

• After making the required changes as per our choice, you can deploy the Ingress controller by

executing this YAML file using the below command:
kubectl apply –f AWS_ALB-IngressController.yml

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 61

NOTE:

To execute the above command, kubectl must be configured on your local server. Refer to the Configuration of AWS

Kubernetes Cluster section to run kubectl from your local machine.

3.5 Configuration files changes
The section includes the following sub-sections:

3.5.1 Prerequisites
The Prerequisites are as follows:

• All the configuration files must be copied to the worker node’s hostPath location defined in the

YAML files and that hostPath must be mounted to the AWS EFS.

• The RedisCache server is already configured.

• A valid wildcard certificate and the domain are already configured.

• SSL or TLS must be configured for the application’s URL.

NOTE:

• Refer to the Mount EFS to Worker Nodes section to mount the EFS to hostPath.

• By default, all Docker containers are running with HTTPS protocol only. If you want to run with HTTP protocol,

then some additional settings must be required. For more details, refer to the Docker Troubleshooting Guide.

3.5.2 OmniDocsWeb changes
The changes in OmniDocsWeb are:

• Update the OmniDocsEJB container name [Defined in OmniDocsEJB.yml file] in

NGOClientData.xml file in between the <endPointURL></endPointURL> tags located inside

the OmniDocsWeb\Newgen\NGConfig\ngdbini folder at the mapped location on the Worker

node.

Figure 3.12

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 62

Here, od110ejb is the name of the OmniDocsEJB container.

• Update the OmniDocsEJB container name [Defined in OmniDocsEJB.yml file] in IS.ini file in

between the <endPointURL ></endPointURL > tags located inside the

OmniDocsWeb\Newgen\NGConfig folder at the mapped location on the Worker node.

For example,

Figure 3.13

• Update the OmniDocsEJB container name [Defined in OmniDocsEJB.yml file] in jboss-ejb-

client.properties file located inside the OmniDocsWeb folder at the mapped location on the

Worker node.

For example,

Figure 3.14

Here, od110ejb is the name of the OmniDocsEJB container.

• Update the AWS Elastic Redis cache’s configuration endpoint in redisson.yaml file against the

singleServerConfig or clusterServersConfig. If redis cache is SSL enabled then use

rediss://<endpoint url>:port and if SSL is not enabled then use redis://<endpoint url>:port.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 63

This file redisson.yaml is located inside the OmniDocsWeb folder at the mapped location on

the Worker node.

Figure 3.15

• Open the web.xml file in edit mode located inside the OmniDocsWeb folder at the mapped

location on the Worker node.

• Search for filter httpHeaderSecurity and update the <param-value></param-value> tag’s

value with OmniDocs URL without context name against <param-name>

antiClickJackingUri</param-name>.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 64

Figure 3.16

• Search for filter-class <filter-class>org.apache.catalina.filters.CorsFilter</filter-class> and

update the <param-value></param-value> tag’s value with OmniDocs URL with protocol

against <param-name> antiClickJackingUri</param-name>.

Figure 3.17

• Open the web_svc.xml file in edit mode located inside the OmniDocsWeb folder at the

mapped location on the Worker node.

• Search for filter-class <filter-class>org.apache.catalina.filters.CorsFilter</filter-class> and

update the <param-value></param-value> tag’s value with OmniDocs URL with protocol

against <param-name> antiClickJackingUri</param-name>.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 65

Figure 3.18

3.5.3 Wrapper changes
Update the OmniDocsEJB container name [Defined in OmniDocsEJB.yml file] in NGOClientData.xml

in between the <endPointURL></endPointURL> tags file located inside the

ODServices/Wrapper/ngdbini folder at the mapped location on the Worker node.

Figure 3.19

Here, od110ejb is the name of the OmniDocsEJB container.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 66

3.5.4 AlarmMailer changes

Prerequisite:

• The cabinet is created and associated with the running containers. If the cabinet is not

created, then refer to the Creating cabinet and data source section.

The changes in AlarmMailer are as follows:

1. Update the OmniDocsEJB container name [Defined in OmniDocsEJB.yml file] in IS.ini in between

the <endPointURL></endPointURL> tags file located inside the ODServices or AlarmMailer folder

at the mapped location on the Worker node.

For example,

<endPointURL>http://od110ejb:8080/callbroker/execute/GenericCallBroker</endPointURL>

Here, od110ejb is the name of the OmniDocsEJB container.

2. Update the OmniDocsEJB container name [Defined in OmniDocsEJB.yml file] in

NGOClientData.xml in between the <endPointURL></endPointURL> tags file located inside the

ODServices/AlarmMailer/ngdbini folder at the mapped location on the Worker node.

For example,

<endPointURL>http://od110ejb:8080/callbroker/execute/GenericCallBroker</endPointURL>

Here, od110ejb is the name of the OmniDocsEJB container.

3. Update the below settings in the Alarm.ini file located inside the ODServices/AlarmMailer folder

at the mapped location on the Worker node.

i. Update the OmniDocs URL without context name in between the

<webservername></webservername> tag.

For example, <webservername>omnidocs.newgendocker.com</webservername>

Here, omnidocs.newgendocker.com is the host path defined in the AWS_ALB-

IngressController.yml file.

ii. Leave the WebServerPort as blank if OmniDocsWEB URL does not contain a port.

For example, <webserverport></webserverport>

iii. Update the OmniDocs cabinet name in between <cabinetname></cabinetname> tag.

For example, <cabinetname>ecmsuite</cabinetname>

Here, ecmsuite is the OmniDocs cabinet name that gets created.

iv. Update the OmniDocs supervisor group’s user in between the <user></user> tag.

For example, <user>supervisor</user>

v. Update the OmniDocs supervisor group’s user password in between the

<password></password> tag. Ensure that this password must be in an encrypted

format.

For example, <password>:X-D;U:T-C;P-C;p5-C;b:d:</password>

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 67

3.5.5 LDAP changes
Prerequisite:

• The cabinet is created and associated with the running containers. If the cabinet is not

created, then refer to the Creating cabinet and data source section.

The changes in LDAP are as follows: (For On_Prem Active Directory)

• Ensure that the LDAP Domain server is configured, and a private tunnel is created between the

Kubernetes worker nodes and the LDAP Domain server.

• Update the OmniDocsEJB container name [Defined in OmniDocsEJB.yml file] in

NGOClientData.xml in between the <endPointURL></endPointURL> tags file located inside the

ODServices/ODAuthMgr/ngdbini folder at the mapped location on the Worker node.

For example,

<endPointURL>http://od110ejb:8080/callbroker/execute/GenericCallBroker</endPointURL>

Here, od110ejb is the name of the OmniDocsEJB container.

• Update the cabinet name and domain name in the ldap.ini and Hook.ini file located inside the

ODServices/ODAuthMgr folder at the mapped location.

Figure 3.20

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 68

Figure 3.21

Here, ecmsuite is the cabinet name and eco.com is the domain name.

• Update the same cabinet name and domain name in the ldap.ini and Hook.ini file located inside

the OmniDocsWeb\Newgen\NGConfig folder at the mapped location.

• Update the ODServices container’s service name [Defined in respective YAML file] in ldap.ini

and Hook.ini file located inside the OmniDocsWeb\Newgen\NGConfig folder at the mapped

location.

Figure 3.22

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 69

Figure 3.23

Here, od110services is the service name of the ODServices container.

• Set <Display> as true for LDAP in AdminMenuOptions.xml located inside

OmniDocsWeb/Newgen/NGConfig/ngdbini/Custom/CABINETNAME folder at mapped location.

Figure 3.24

The changes in LDAP are as follows: (For Azure Active Directory)

• Update the OmniDocsEJB container name [Defined in OmniDocsEJB.yml file] in

NGOClientData.xml in between the <endPointURL></endPointURL> tags file located inside the

ODServices/ODAuthMgr/ngdbini folder at the mapped location on the Worker node.

For example,

<endPointURL>http://od110ejb:8080/callbroker/execute/GenericCallBroker</endPointURL>

Here, od110ejb is the name of the OmniDocsEJB container.

• Update the cabinet name, domain name, and directory service as AzureAD in the Hook.ini file

located inside the ODServices/ODAuthMgr folder at the mapped location.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 70

Figure 3.25

• Update the cabinet name and domain name in the ldap.ini file located inside the ODServices or

ODAuthMgr folder at the mapped location.

Figure 3.26

Here, ecmsuite is the cabinet name and eco.com is the domain name.

• Update the directory service as AzureAD in the DIS.xml file located inside the ODServices or

ODAuthMgr folder at the mapped location.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 71

Figure 3.27

• Update the same cabinet name and domain name in the ldap.ini and Hook.ini file located inside

the OmniDocsWeb\Newgen\NGConfig folder at the mapped location.

• Update the ODServices container’s service name [Defined in respective YAML file] in ldap.ini

and Hook.ini file located inside the OmniDocsWeb\Newgen\NGConfig folder at the mapped

location.

• Update the directory service as AzureAD in Hook.ini and config.ini located inside the

OmniDocsWeb\Newgen\NGConfig folder at the mapped location.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 72

Figure 3.28

Figure 3.29

Figure 3.30

Here, od110services is the service name of the ODServices container.

• Set <Display> as true for ldap in AdminMenuOptions.xml located inside

OmniDocsWeb/Newgen/NGConfig/ngdbini/Custom/CABINETNAME folder at mapped location.

For example,

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 73

Figure 3.31

3.5.6 SSO changes
Prerequisite:

The cabinet is created and associated with the running containers. If the cabinet is not created,

then refer to Cabinet and Data Source Creation section.

The changes in SSO are as follows:

• Update the <Host-Path URL of OmniDocsWeb container> at the place of

ibps5aurora.newgendocker.com in mapping.xml file located inside the

OmniDocsWeb/Newgen/NGConfig/ngdbini/SSOConFig folder.

• Update the CabinetName in mapping.xml file located inside the

OmniDocsWeb/Newgen/NGConfig/ngdbini/SSOConFig folder.

• Configure the CabinetName=DomainName in sso.ini file located inside the

OmniDocsWeb/Newgen/NGConfig/ngdbini/SSOConFig folder.

• ecmsuite=eco.com

3.5.7 Scheduler changes
Prerequisite:

The cabinet is created and associated with the running containers. If the cabinet is not created,

then refer to Cabinet and Data Source Creation section.

The changes in Scheduler are as follows:

• Update the OmniDocsEJB container name [Defined in OmniDocsEJB.yml file] in IS.ini in

between the <endPointURL></endPointURL> tags file located inside the ODServices or

Scheduler folder at the mapped location on the Worker node.

For example,

<endPointURL>http://od110ejb:8080/callbroker/execute/GenericCallBroker</endPointURL>

Here, od110ejb is the name of the OmniDocsEJB container.

• Update the OmniDocsEJB container name [Defined in OmniDocsEJB.yml file] in

NGOClientData.xml in between the <endPointURL></endPointURL> tags file located inside

the ODServices/Scheduler/ngdbini folder at the mapped location on the Worker node.

For example,

<endPointURL>http://od110ejb:8080/callbroker/execute/GenericCallBroker</endPointURL>

Here, od110ejb is the name of the OmniDocsEJB container.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 74

• Update the ODServices container’s service name [Defined in respective YAML file] in

SchedulerConf.ini file located at ODServices or Scheduler folder at the mapped location.

For example: schedulerIpAddress=od110services

• Update the ODServices container’s service name [Defined in respective YAML file] in

eworkstyle.ini file located at

OmniDocsWeb/Newgen/NGConfig/ngdbini/Custom/<CABINETNAME> folder at mapped

location.

For example: schedularLocation=od110services

3.5.8 ThumbnailManager changes
Prerequisite:

The cabinet is created and associated with the running containers. If the cabinet is not created,

then refer to Cabinet and Data Source Creation section.

The changes in ThumbnailManager are as follows:

• Update the OmniDocsEJB container name [Defined in OmniDocsEJB.yml file] in IS.ini in

between the <endPointURL></endPointURL> tags file located inside the ODServices or

ThumbnailManager folder at the mapped location on the Worker node.

For example,

<endPointURL>http://od110ejb:8080/callbroker/execute/GenericCallBroker</endPointURL>

Here, od110ejb is the name of the OmniDocsEJB container.

• Update the OmniDocsEJB container name [Defined in OmniDocsEJB.yml file] in

NGOClientData.xml in between the <endPointURL></endPointURL> tags file located inside

the ODServices/ThumbnailManager/ngdbini folder at the mapped location on the Worker

node.

For example,

<endPointURL>http://od110ejb:8080/callbroker/execute/GenericCallBroker</endPointURL>

Here, od110ejb is the name of the OmniDocsEJB container.

• Update the cabinet name, supervisor group’s user name, and password in

ThumnailConfig.xml located inside the ODServices or ThumbnailManager folder at the

mapped location on the Worker node.

Figure 3.32

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 75

3.5.9 TEM changes
Prerequisite:

The cabinet is created and associated with the running containers. If the cabinet is not created,

then refer to Cabinet and Data Source Creation section.

The changes in TEM are as follows:

• Update the OmniDocsEJB container name [Defined in OmniDocsEJB.yml file] in IS.ini and

NGOClientData.xml in between the <endPointURL></endPointURL> tags file located inside

the TEM folder at the mapped location on the Worker node.

For example,

<endPointURL>http://od110ejb:8080/callbroker/execute/GenericCallBroker</endPointURL>

Here, od110ejb is the name of the OmniDocsEJB container.

• Update the cabinet name in filename FTSServer-CABINETNAME-1.properties.

For example: FTSServer-ecmsuite-1.properties [ecmsuite is the cabinet name].

• Update the OmniDocsEJB container name [Defined in OmniDocsEJB.yml file] in FTSServer-

ecmsuite-1.properties.

• Update the OmniDocs supervisor group’s user name.

• Update the OmniDocs supervisor group’s user password. Ensure this password must be in an

encrypted format.

Figure 3.33

3.5.10 EasySearch changes
Prerequisite:

The cabinet is created and associated with the running containers. If the cabinet is not created,

then refer to Cabinet and Data Source Creation section.

Based on the EasySearch Docker images, configuration changes are done accordingly.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 76

EasySearch (Apache Manifold Only)

• Update the Database details in the ESconfig.ini file located inside the

EasySearch\ESConfigurator\conf folder at the mapped location on the Worker node.

➢ ESClusterName=CABINETNAME_cluster

➢ OdDBIPAddress=DBIP

➢ OdDBPort=DBPORT

➢ OdCabinetName=CABINETNAME

➢ OdDBUserName=DBUSER

➢ OdDBPassword=DBPASSWORD in encrypted format

➢ OdDBType=sqlserver | oracle | postgres

Figure 3.34

• Update AppToBeConfigured=ApacheManifold in the ESconfig.ini file located inside the

EasySearch\ESConfigurator\conf folder at the mapped location on the Worker node.

• Update the cabinet name in the CrawlerConfig.xml file located inside the EasySearch\apache-

manifoldcf-2.25\example folder at the mapped location on the Worker node.

• Update the OmniDocs supervisor group’s user name.

• Update the OmniDocs supervisor group’s user password. Ensure this password must be in an

encrypted format.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 77

Figure 3.35

• Update the OmniDocsEJB container name [Defined in OmniDocsEJB.yml file] in

NGOClientData.xml and RMClientData.xml in between the <endPointURL></endPointURL> tags

file located inside the EasySearch/apache-manifoldcf-2.25/example/Newgen/NGConfig/ngdbini

folder at the mapped location on the Worker node.

• Update the EnableEasySearch=Y in the eworkstyle.ini file located inside the OmniDocsWeb\

Newgen\NGConfig\ngdbini\Custom\CABINET_NAME folder at the mapped location on the

Worker node.

Figure 3.36

3.5.11 WOPI changes
• Update the OmniDocsEJB container name [Defined in OmniDocsEJB.yml file] in

NGOClientData.xml file in between the <endPointURL></endPointURL> tags located inside

the OmniDocs_WOPI\Newgen\NGConfig\ngdbini folder at the mapped location on the

Worker node.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 78

Figure 3.37

Here, od110ejb is the name of the OmniDocsEJB container.

• Update the OmniDocsEJB container name [Defined in OmniDocsEJB.yml file] in IS.ini file in

between the <endPointURL ></endPointURL > tags located inside the

OmniDocs_WOPI\Newgen\NGConfig folder at the mapped location on the Worker node.

For example,

Figure 3.38

• Update the WOPI_SOURCE, OMNIDOCS_REDIRECTURL and CABINETNAME in

WOPIConfiguration.ini file located inside the

OmniDocs_WOPI\Newgen\NGConfig\AddInsConfig folder at the mapped location on the

Worker node.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 79

Figure 3.39

Where,

https://wopi.newgendocker.com is host URL of WOPI container.

https://omnidocs11alpine.newgendocker.com is Host URL of Omnidocs WEB container.

odpostgres15dec is cabinet name.

• Open the web.xml file in edit mode located inside the OmniDocs_WOPI folder at the mapped

location on the Worker node.

• Search for filter-class <filter-class>org.apache.catalina.filters.CorsFilter</filter-class> and

update the <param-value></param-value> tag’s value with OmniDocs URL against <param-

name> antiClickJackingUri</param-name> and * against <param-

name>cors.allowed.origins</param-name>

Figure 3.40

• Add the CSPHeaderAllowedDomains tag in the eworkstyle.ini file located inside the

OmniDocsWeb/Newgen/NGConfig/ngdbini/odwebini folder at the mapped location on the

Worker node.

 CSPHeaderAllowedDomains=default-src * data: 'unsafe-inline' 'unsafe-eval';

https://omnidocs11alpine.newgendocker.com/

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 80

• Add the WOPIOfficeExtensionSuppport and WOPIOfficeExtensionSuppportURL tag in the

eworkstyle.ini file located inside the

OmniDocsWeb/Newgen/NGConfig/ngdbini/Custom/CABINET_NAME folder at the mapped

location on the Worker node.

o WOPIOfficeExtensionSuppport = doc, docx, DOCX, DOC, xls, xlsx, XLSX, XLS, ppt, pptx,

PPTX, PPT, wopitest, WOPITEST, wopitestx, and WOPITESTX

o WOPIOfficeExtensionSuppportURL = https://wopi.newgendocker.com

3.5.12 OmniScanWeb changes
Update the AWS Elastic Redis cache’s configuration endpoint in redisson.yaml file against the

singleServerConfig or clusterServersConfig. If redis cache is SSL enabled then use rediss://<endpoint

url>:port and if SSL is not enabled then use redis://<endpoint url>:port. This file redisson.yaml is

located inside the OmniscanWeb6.0 folder at the mapped location on the Worker node.

Figure 3.41

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 81

3.6 Deploying containers
Perform the below steps to deploy the containers:

1. You can deploy the containers on AWS Elastic Kubernetes Service from our local machine by

executing the below command or you can deploy them using AWS CodePipeline. However, it

recommends deploying the containers using AWS CodePipeline for better traceability.
kubectl apply –f <YAML_File>

For example,
kubectl apply –f OmniDocsWeb.yml

NOTE:

• To execute the above command, kubectl must be configured on your local server. Refer to the Configuration

of AWS Kubernetes Cluster section to run kubectl from your local machine.

• To deploy the containers using AWS CodePipeline, AWS CodePipeline must be configured. Refer to the

Configuration of AWS CodePipeline section.

2. In AWS CodePipeline, a separate Release pipeline is created for each Docker image like

OmniDocsWeb, OmniDocsWebService, OmniDocsEJB, OmniDocsServices, EasySearch, TEM, and

OmniScanWeb6.0.

For Example,

Figure 3.42

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 82

3. Trigger the Release Pipeline to deploy the required Docker containers.

4. Once the deployment is done, deployed containers can be visible from the Kubernetes

Dashboard. Refer to the Configuration of AWS Kubernetes Cluster to configure the Kubernetes

Dashboard.

Figure 3.43

5. Update the container’s replica set from 1 (default value) to any other number in YAML files,

then that number of containers is listed in Kubernetes Dashboard.

6. Increase the replica set from Kubernetes Dashboard from the Deployments menu on the left-

panel.

For Example,

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 83

Figure 3.44

7. But, when you redeploy the containers from AWS CodePIpeline, the replica set increased from

Kubernetes gets overwritten by the replica set defined in the YAML file.

8. In any case, if you need to restart the container, then you have two options. Either redeploy the

container from AWS CodePipeline which launches the new container by following up the rolling

update feature of Kubernetes or execute the restart command from the Kubernetes pod’s shell.

9. To execute the restart command from the Kubernetes pod’s shell, follow the below steps:

i. Open the Kubernetes Dashboard and list out all the deployed pods.

ii. Click Pod that you want to restart.

iii. Click Exec into pod icon given on upper-right panel.

Figure 3.45

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 84

➢ After that pod’s shell terminal opens.

➢ Execute the below command to restart the container:
restartjws.sh

➢ The restart command is different for each container. Refer to the below table:

Container Name Restart Command

OmniDocsWeb, OmniDocsWebService restartjws.sh

OmniDocsEJB restartjboss.sh

OmniDocsServices restartalarm.sh, restartauthmgr.sh,

restartscheduler.sh,restartthumbnail.sh,

restartwrapper.sh

EasySearch(With ElasticSearch) restarteasysearch.sh

TEM restarttem.sh

OmniScanWeb6.0 restartjws.sh

OmniDocsWOPI restartjws.sh

10. Once the EasySearch11 container is deployed (Whether With ElasticSearch or Without

ElasticSearch), execute the below command in Kubernetes pod’s shell for the 1st time to

configure the Apache Manifold jobs. After that in subsequent deployments, this execution is not

required.
runESConfigurator.sh

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 85

3.7 Creating cabinet and data source
Prerequisites:

• OmniDocsWeb, OmniDocsEJB, and OmniDocsServices are already deployed.

• ALB Ingress Controller is already configured and deployed using the AWS_ALB-

IngressController.yml file.

• S3 bucket is already created to store the PN files. PN files are encrypted files that contain all

the added, uploaded, and scanned documents by Newgen products.

Once the above prerequisites are fulfilled, refer to the below sections to create the Cabinet and
Data Source.

• Getting started with OSA

• Register JTS Server

• Connecting OSA to the JTS Server

• Creating a Cabinet

• Associating the Cabinet

• Creating a Data Source

• Registration of the Cabinet

• Creating Site and Volume

3.7.1 Getting started with OSA
Perform the below steps to start the OSA:

1. Since the container is a CLI-based deployment you can’t launch any GUI-based application inside

the container. But you must use the OSA to create a cabinet that is a GUI-based application. In

such a case, deploy OSA to some GUI-based machine either on a local server or on an EC2

instance. Also, add an inbound rule in the Kubernetes worker node’s security group to allow

OSA to communicate with the OmniDocsServices container deployed on that worker node.

2. Once OSA is deployed on a machine, navigate to the OSA folder on that machine and double

Click RunAdmin.bat (For Windows) or RunAdmin.sh (For Linux) to start OSA.

3. When the application is launched. The Login dialog box appears.

Figure 3.46

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 86

4. Select the user as System and specify the password as system.

5. Click OK to log in. After the successful login, the OSA screen appears displaying the list of

registered services.

Figure 3.47

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 87

3.7.2 Registering JTS server
Perform the below steps to register the JTS Server:

1. To register the JTS server, click Register button. The Register New Server dialog box appears.

Figure 3.48

2. Select the JTS and specify the public IP address of the Kubernetes Worker node on which the

OmniDocsServices (Wrapper, AlarmMailer, THN, and so on) container is deployed.

For example, suppose there are two worker nodes in the Kubernetes cluster and after deploying

the OmniDocsServices container, it gets deployed to the 1st worker node then specify the IP

address of the 1st worker node. But in a case, 2 replicas are deployed on the OmniDocsServices

container, one on each worker node, in that case, specify the IP address of any worker node.

3. Specify the Admin port of Wrapper service running inside the OmniDocsServices container.

Since Wrapper is running inside the container with Admin port 9996 but that Admin port cannot

be accessed directly. Kubernetes generates a random port (aka NodePort) for each port running

inside the container that is exposed outside the container for public use. To get this NodePort

either from Kubernetes Dashboard or by executing the below command from your local

machine:
kubectl get svc <OmniDocsServices container name>

For example,

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 88

Figure 3.49

Here, Wrapper Admin port 9990 is exposed outside the container and Kubernetes has

generated a random port 31370 as a NodePort. This NodePort keeps changing whenever you

redeploy the container.

Figure 3.50

4. Click OK to register the JTS Server.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 89

3.7.3 Connecting OSA to the JTS server
Perform the below steps to connect the OSA to the JTS Server:

1. Once the JTS Server is registered, it is displayed in the list in a disconnected state.

Figure 3.51

2. Select the registered JTS Server and click Connect. Once JTS is connected, the Manage button

gets enabled.

3. Click Manage button, after clicking on the Manage button, an entry of the connected JTS server

along with its IP Address is displayed on the upper-left panel in the repository view.

4. Select the JTS from the repository view. The list of already created and associated cabinets,

appears.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 90

Figure 3.52

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 91

3.7.4 Creating cabinet
Perform the below steps to create a cabinet:

For MSSQL:

1. Click Create. The Create Cabinet dialog box appears.

Figure 3.53

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 92

2. Select the cabinet type that needs to be created from the Cabinet Type area. The Cabinet can be

a Document database, an Image server database, or both.

3. Select the database option from the Database Type section.

4. Specify the initial database size in the Device Size textbox and specify the initial log size in the

Log Size textbox. Else, continue with the default values.

5. Specify the following cabinet information:

• Specify the cabinet name in the Cabinet Name textbox.

• Specify the server name (name of the machine where the MS SQL server is running) in the

Server I.P. textbox.

• Specify the username in the User name textbox.

• Specify the password in the Password textbox.

• Specify the CD key in the CD Key textbox.

• Select the Enable FTS checkbox.

NOTE:

In the case of MSSQL if the Database port is not equal to 1433 (Default port) update the database port in the

DatabaseDriver.xml file located inside the OmniDocsEjb/ngdbini folder at the mapped location on the worker node

before creating the cabinet.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 93

Figure 3.54

6. Click OK to create the cabinet. The Cabinet created successfully dialog appears.

Figure 3.55

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 94

For Aurora PostgreSQL:

7. Click Create. The Create Cabinet dialog box appears.

Figure 3.56

8. Select the cabinet type that needs to be created from the Cabinet Type area. The Cabinet can be

a Document database, an Image server database, or both.

9. Select the database option from the Database Type section.

10. Specify the port number if default port 5432 is not used.

11. Specify the following cabinet information:

• Specify the cabinet name in the Cabinet Name textbox.

• Specify the Aurora PostgreSQL server name in the Server I.P. textbox.

• Specify the username in the User name textbox.

• Specify the password in the Password textbox.

• Specify the CD key in the CD Key textbox.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 95

Figure 3.57

12. Click OK to create the cabinet. The Cabinet created successfully dialog box appears.

Figure 3.58

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 96

3.7.5 Associating cabinet
Perform the below steps to associate the cabinet:

For MSSQL:

1. Click Stop to enable the Associate button.

2. Click Associate. The Associate a Cabinet dialog appears with the following tabs:

i. Database tab: Select the database type.

ii. Cabinet properties tab: Specify the cabinet details that you have specified during cabinet

creation.

Figure 3.59

iii. Connection tab: Specify the maximum and the minimum number of connections that

the JTS should maintain with the database, specify the query time out for the selected

cabinet in the Query timeout text box and specify the refresh interval time for

connection.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 97

Figure 3.60

3. Click Done to associate the selected cabinet. Once the cabinet is associated successfully, it

appears with the list.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 98

Figure 3.61

For Aurora PostgreSQL:

1. Click Stop to enable the Associate button.

2. Click Associate. The Associate a Cabinet dialog appears with the following tabs:

i. Database tab: Select the database type.

ii. Cabinet properties tab: Specify the cabinet details that you have specified during cabinet

creation.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 99

Figure 3.62

iii. Connection tab: Specify the maximum and the minimum number of connections that the

JTS must maintain with the database. Also, specify the query time out for the selected

cabinet in the Query timeout text box and specify the refresh interval time for connection.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 100

Figure 3.63

3. Click Done to associate the selected cabinet. Once the cabinet is associated successfully, it

appears with the list.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 101

Figure 3.64

3.7.6 Creating data source
Perform the below steps to create the data source:

For MSSQL:

1. Open the<Host-Path URL of OmniDocsEJB container> like http://ecmsuiteconsole.aws.co.in as

defined in the AWS_ALB-IngressController.yml file. It automatically redirects to the JBoss EAP

7.4 Admin console.

2. Enter the newgen as username and password system123# respectively to login to the Admin

console. After a successful login, the Red Hat JBoss Enterprise Application Platform screen

appears.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 102

Figure 3.65

3. Go to the Subsystems in the Configuration tab.

4. Go to the Datasources and Drivers. Then, click Datasources.

Figure 3.66

5. Click Plus + icon and select Add Datasource. The Add Datasource dialog appears.

6. For MSSQL Database Server, select Microsoft SQLServer and click Next.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 103

Figure 3.67

7. Provide a DataSource Name and JNDI Name.

• Name: Enter the OmniDocs cabinet name that is cabinet name.

• JNDI Name: java:/same as OmniDocs cabinet name

8. Click Next.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 104

Figure 3.68

9. Select JDBC Driver Name.

10. For MSSQL, select sqljdbc42.jar.

11. Clear Drive Module Name and Driver Class Name textboxes.

12. Click Next.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 105

Figure 3.69

13. Provide the following Connection Setting details and click Next:

• Connection URL:

jdbc:sqlserver://MSSQL_Server_IP:MSSQL_Server_Port;databaseName=CABINET_NAME

• UserName: Enter the SQL Server User Name

• Password: Enter the SQL Server Password

• Security Domain: Keep this blank.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 106

Figure 3.70

14. Click Next on the Test Connection page.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 107

Figure 3.71

15. Click Finish. After the creation of the datasource, a success message appears.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 108

Figure 3.72

16. Click View Datasource to view the created datasource. The created datasource appears in the

list of Datasource.

17. Click View against the datasource. A screen appears with the attributes of the datasource

appears.

18. Click Edit link.

Figure 3.73

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 109

19. Clear the Datasource Class textbox and click Save.

Figure 3.74

20. After that restart the OmniDocsEJB container.

21. Once the OmniDocsEJB container is restarted, open the JBossEAP Admin console once again.

22. Go to the Subsystems in the Configuration tab.

23. Go to the Datasources and Drivers. Then, click Datasources.

24. Select the created data source and click Test connection from the dropdown list.

Figure 3.75

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 110

On the successful data connection, a success message appears.

Figure 3.76

25. Add the below connection pool setting and idle-connection-timeout setting inside the created

DataSource in standalone.xml file located inside the OmniDocsEjb or configuration folder at the

mapped location on the worker node.

<pool>

 <min-pool-size>100</min-pool-size>

 <initial-pool-size>100</initial-pool-size>

 <max-pool-size>600</max-pool-size>

 <flush-strategy>Gracefully</flush-strategy>

</pool>

<timeout>

 <idle-timeout-minutes>5</idle-timeout-minutes>

</timeout>

For example,

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 111

Figure 3.77

26. Restart the OmniDocsEJB container once again.

For Aurora PostgreSQL:

1. Open the<Host-Path URL of OmniDocsEJB container> like http://ecmsuiteconsole.aws.co.in as

defined in the AWS_ALB-IngressController.yml file. It automatically redirects to the JBossEAP 7.4

Admin console.

2. Specify the newgen as username and system123# as password respectively to login to the

Admin console.

Figure 3.78

3. Go to the Subsystems in the Configuration tab.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 112

4. Go to the Datasources and Drivers. Then, click Datasources.

5. Click Plus + icon and select Add Datasource. The Add Datasource dialog appears.

Figure 3.79

6. For the Aurora PostgreSQL Database Server, select PostgreSQL and click Next.

Figure 3.80

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 113

7. Provide a DataSource Name and JNDI Name.

• Name: Enter same as OmniDocs cabinet name.

• JNDI Name: java:/same as OmniDocs cabinet name.

8. Click Next.

Figure 3.81

9. Select JDBC Driver Name.

10. For Aurora PostgreSQL, select postgresql-42.5.0.jar.

11. Clear Drive Module Name and Driver Class Name textboxes and click Next.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 114

Figure 3.82

12. Provide the following Connection Setting details and click Next:

• Connection URL:

jdbc:postgresql://AuroraPostgrSQL_Server_IP:AurorPostgreSQL_Server_Port/CABINET_NAM

E

• UserName: AuroraPostgreSQL Server User Name

• Password: AuroraPostgreSQL Server Password

• Security Domain: Keep this blank.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 115

Figure 3.83

13. Click Next on the Test Connection page.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 116

Figure 3.84

14. Click Finish. After the creation of the datasource, a success message appears.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 117

Figure 3.85

15. Click View Datasource to view the created datasource. The created datasource appears in the

list of Datasource.

16. Click View against the datasource. A screen appears with the attributes of the datasource.

17. Click Edit link and clear the Datasource Class textbox.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 118

Figure 3.86

18. Click Save. After that restart the OmniDocsEJB container.

Figure 3.87

19. Once the OmniDocsEJB container is restarted, open the JBossEAP Admin console once again.

20. Go to the Subsystems in the Configuration tab.

21. Go to the Datasources and Drivers. Then, click Datasources.

22. Select the created data source and click Test connection from the dropdown list.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 119

Figure 3.88

On a successful data connection, a success message appears.

Figure 3.89

23. Add the below connection pool setting and idle-connection-timeout setting inside the created

DataSource in standalone.xml file located inside the OmniDocsEjb or configuration folder at the

mapped location on the worker node.

<pool>

 <min-pool-size>0</min-pool-size>

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 120

 <initial-pool-size>0</initial-pool-size>

 <max-pool-size>600</max-pool-size>

 <flush-strategy>Gracefully</flush-strategy>

</pool>

<timeout>

 <idle-timeout-minutes>5</idle-timeout-minutes>

</timeout>

For example,

Figure 3.90

24. Restart the OmniDocsEJB container once again.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 121

3.7.7 Registering cabinet
Perform the below steps to register a cabinet:

1. Register the cabinet for OmniDocs Admin using the following URL:

http://<Host-Path URL of OmniDocsWeb

container>/omnidocs/admin/main/registration/registration.jsp

For example,

http://ecmsuite.aws.co.in/omnidocs/admin/main/registration/registration.jsp

Figure 3.91

All the created cabinets get auto populated in the Cabinet List dropdown list.

2. Select the required cabinet, select the associated site, and specify the Username and Password.

3. Select the Register as Both and click Register.After successful registration, a confirmation

message appears.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 122

Figure 3.92

3.7.8 Creating Site and Volume
Perform the below steps to create site and volume:

1. Login to the OmniDocs Admin using the following URL:

http://<Host-Path URL of OmniDocsWeb container>/omnidocs/admin

For example,

http://ecmsuite.aws.co.in/omnidocs/admin

Figure 3.93

2. After a successful login, click Sites link under Administration.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 123

Figure 3.94

3. Click +Add. The Add Site dialog appears.

Figure 3.95

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 124

4. Click Amazon S3 Site.

5. Specify the user-defined site name, Access Key, and Secret Key that have rights to the S3

bucket.

6. Click Save.

Figure 3.96

The added Site appears under Sites in the left pane.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 125

Figure 3.97

7. Go back to the Home page.

Figure 3.98

8. Select Volumes. The Volumes screen appears.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 126

Figure 3.99

9. Specify the following details:

• Home Site: Select the newly created Site name.

• Default Path: Select the S3 bucket in which you want to store PN files.

• Volume Name: Specify the user-defined volume name.

10. Click Add.

Figure 3.100

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 127

The added volume appears under Image Volumes in the left panel.

Figure 3.101

11. Go back to the Home screen.

Figure 3.102

12. Click Cabinet Details.

13. Select the added volume from the Default Image Volume using the dropdown

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 128

14. Click Save. The Site and Volume are now created successfully.

Figure 3.103

15. Log in to the OmniDocs Web using the below URL to start.

http://<Host-Path URL of OmniDocsWeb container>/omnidocs/web

For example: http://ecmsuite.aws.co.in/omnidocs/web

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 129

3.8 EasySearch Post-Deployment changes
Perform the below steps to do EasySearch post-deployment changes:

1. Login to the ApacheManifold Admin using the following URL:

<Host-Path URL of ApacheManifold>/mcf-crawler-ui/login.jsp

For example,

http://ecmsuiteapache.aws.co.in/mcf-crawler-ui/login.jsp

Figure 3.104

2. Log in with the following credentials:

• User ID: admin

• Password: admin

3. After a successful login, click Jobs tree showing in the left panel.

4. Click Status and Job Management. The below job list appears:

• <CABINET_NAME>_Document

• <CABINET_NAME>_Folder

5. Start both the jobs.

6. Once both the jobs started, the Job’s status appears as Running.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 130

Figure 3.105

3.9 Registering cabinet in OmniScanWeb
Perform the below steps to register the cabinet in OmniScanWeb:

1. Open the OmniScanWeb using the following URL:

http://<Host-Path URL of OmniScanWeb container>/omniscanweb

For example,

https://omniscan.newgendocker.com/omniscanweb

2. Click Register New Cabinet link on the OmniScan Web login screen.

Figure 3.106

https://omniscan.newgendocker.com/omniscanweb

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 131

3. Specify the Server URL as given below:

http://<Host-Path URL of OmniDocsWeb container>/NGServlet/servlet/ExternalServlet

For example,

https://omnidocs.newgendocker.com/NGServlet/servlet/ExternalServlet

4. Specify the OmniDocs EJB container name for AppServer IP or Server URL, 8080 for AppServer

Port, and JBOSSEAP for AppServer Type.

Figure 3.107

5. Click Connect.

6. Select the Cabinet Name, Site ID, and Volume ID from the list.

https://omnidocs.newgendocker.com/NGServlet/servlet/ExternalServlet

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 132

Figure 3.108

7. Click Register.

The registered cabinet appears in the Cabinet Name list on the login screen. Now you can log

into OmniScan Web.

NOTE:

Ensure that the OmniScan_Template_Repository folder is already created in OmniDocs before logging into OmniScan

Web.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 133

3.10 Creating secret manager policy and secrets
This section explains how to create a secret manager policy and how the secret vault allows you to

store the sensitive data.

Perform the below steps to create a secret manager policy:

1. Create an IAM Policy with the name SecretMgr_Policy with the following permissions:
{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Sid": "VisualEditor0",

 "Effect": "Allow",

 "Action": [

 "secretsmanager:DescribeSecret",

 "secretsmanager:PutSecretValue",

 "secretsmanager:CreateSecret",

 "secretsmanager:DeleteSecret",

 "secretsmanager:CancelRotateSecret",

 "secretsmanager:ListSecretVersionIds",

 "secretsmanager:UpdateSecret",

 "secretsmanager:GetRandomPassword",

 "secretsmanager:GetResourcePolicy",

 "secretsmanager:GetSecretValue",

 "secretsmanager:StopReplicationToReplica",

 "secretsmanager:ReplicateSecretToRegions",

 "secretsmanager:RestoreSecret",

 "secretsmanager:RotateSecret",

 "secretsmanager:UpdateSecretVersionStage",

 "secretsmanager:RemoveRegionsFromReplication",

 "secretsmanager:ListSecrets"

],

 "Resource": "*"

 }

]

}

2. Add this policy to Worker node IAM Role.

3. Update base64 Encoded string of https://< omnidocs web service Host URL>/Security [Present

in AWS_ALB-IngressController.yml file] in SecretManager.ini file located inside below folders.

i. OmniDocsEjb/ngdbini

ii. OmniDocsWeb/Newgen/NGConfig/ngdbini

iii. ODServices/AlarmMailer/ngdbini

iv. TEM

v. EasySearch/ESConfigurator/Newgen/NGConfig/ngdbini

vi. EasySearch/apache-manifoldcf-2.25/example/Newgen/NGConfig/ngdbini

For Example :

If Security war context URL is as following:

https://omnidocs11webservices2.newgendocker.com/Security/

https://omnidocs11webservices2.newgendocker.com/Security/

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 134

Then, EndPointURL property in SecretManager.ini should be as following:

EndPointURL=aHR0cHM6Ly9vbW5pZG9jczExd2Vic2VydmljZXMyLm5ld2dlbmRvY2tlci5jb20vU2VjdXJpdHk

v

4. Update the below properties in KeyVault.properties file located inside

OmniDocsWeb/Newgen/NGConfig/ngdbini folder.

➢ Region (Its value should be region of the AWS account, for example, ap-south-1)

➢ KeyVaultType (Its value should be the key vault type, for example, AWS)

3.10.1 Creating secret for Alarm Mailer
Perform the below steps to create secrets for Alarm Mailer:

1. Open the AWS Secret Manager console.

2. Click Store a new secret.

3. Select Other type of secret.

4. Add Key or value mentioned below:

• CabinetName_Username

• CabinetName_Password

NOTE:
Update the CabinetName with your CabinetName. The values are:

• CabinetName_Username: supervisor group’s username

• CabinetName_Password: supervisor group’s password

Figure 3.109

5. Click Next.

6. Enter Secret name is AlarmMailerPSequence.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 135

7. Click Next and Store to save this Secret.

8. Update the values in below tags that is located inside <general> tag in Alarm.ini located

inside the ODServices/AlarmMailer folder at the mapped location on the Worker node.

<keyvault>true</keyvault>

<secret>AlarmMailerPSequence</secret>

Here: AlarmMailerPSequence is Secret name that is already created.

3.10.2 Creating secret for LDAP
Perform the below steps to create Secrets for LDAP:

1. Open the AWS Secret Manager console.

2. Click Store a new secret.

3. Select Other type of secret.

4. Add Key or value mentioned below:

• ODUsername

• ODPassword

• DomainUserName

• DomainPassword

• DistinguishedName

The values are:

• ODUsername: supervisor group’s username

• ODPassword: supervisor group’s username

• DomainUserName: Active Directory Domain username

• DomainPassword: Active Directory Domain password

• DistinguishedName: Active Directory Distinguished username

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 136

Figure 3.110

5. Click Next.

6. Enter Secret name is LDAP.

7. Click Next and Store to save this Secret.

8. Update the values in below tags that are located inside <ServerInfo> tag in Server.xml located

inside the OmniDocsEjb/ngdbini folder at the mapped location on the Worker node.

<secretName>LDAP</secretName>

<secretManager>Y</secretManager>

Here: LDAP is Secret name that is already created.

3.10.3 Creating secret for TEM
Perform the below steps to create Secrets for TEM:

1. Open the AWS Secret Manager console.

2. Click Store a new secret.

3. Select Other type of secret.

4. Secret Keys, would be created separately for each instances as below:

For example, if there are two instances as below:

• cabinetname _1

• 2ndcabinetname _2

Then, the keys in AWS Secrets Manager would be:

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 137

• cabinetname_1_username

• cabinetname_1_password

• 2ndcabinetname_2_username

• 2ndcabinetname_2_password

NOTE:
Update the CabinetName with your CabinetName. The values are:

• cabinetname_1_username: supervisor group’s username

• cabinetname_1_password: supervisor group’s password

Figure 3.111

5. Click Next.

6. Enter Secret name is TEM.

7. Click Next and Store to save this Secret.

8. Update the KeyVault=true and SecretName=TEM in global.properties located inside the TEM

folder at the mapped location on the Worker node.

Here: TEM is Secret name that is already created.

3.10.4 Creating secret for EasySearch
Perform the below steps to create Secrets for EasySearch:

1. Open the AWS Secret Manager console.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 138

2. Click Store a new secret.

3. Select Other type of secret.

4. Add Key or value mentioned below:

• CABINETNAME_user

• CABINETNAME_password

Here, CABINETNAME should be in capital letters.

NOTE:

Update the CABINETNAME with your CabinetName. The values are:

• CABINETNAME_user: supervisor group’s username

• CABINETNAME_password: supervisor group’s password

Figure 3.112

5. Click Next.

6. Enter Secret name is CrawlerConfiguration. (Secret name should not be change)

7. Click Next and Store to save this Secret.

8. Click Store a new secret.

9. Select Other type of secret.

10. Add Key or value mentioned below:

• CABINETNAME_OdDBUserName

• CABINETNAME_OdDBPassword

Here, CABINETNAME should be in capital letters.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 139

NOTE:
Update the CABINETNAME with your CabinetName. The values are:

• CABINETNAME_OdDBUserName: database username

• CABINETNAME_OdDBPassword: database password

Figure 3.113

11. Click Next.

12. Enter Secret name is ESConfiguration. (Secret name should not be change)

13. Click Next and Store to save this Secret.

14. Update the <KeyVault>true</KeyVault> in CrawlerConfig.xml located inside the

EasySearch/apache-manifoldcf-2.25/example folder at the mapped location on the Worker

node.

15. Update the KeyVault=true in ESconfig.ini located inside the EasySearch/ESConfigurator/conf

folder at the mapped location on the Worker node

4 Configuring AWS CodePipeline for container

deployment on EKS
This chapter describes the configuration of AWS CodePipeline for container deployment on Elastic

Kubernetes Service (EKS).

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 140

4.1 Overview
The Build Pipeline and Release Pipeline are separated into two parts. Build Pipeline is done through

the Jenkins server which can be installed on an on-premises machine or a cloud machine. Using the

AWS CodePipeline cloud service, you can manage the Release pipeline. In this architecture, three

stages are created that is, Dev, UAT, and Production and in each stage, deployment is quite

different. You can have some more stages depending on the requirements. This document

describes the configuration of the AWS CodePipeline for container deployment on EKS.

4.2 Architecture of CICD pipeline

Figure 4.1

• The Newgen representative builds the product’s base Docker images on the company’s on-

premises servers using Jenkins

• As soon as the Dev team commits the code to the source code repository, the Jenkins

pipeline gets triggered. It pulls the code > compiles them > prepares the build artifacts >

creates Docker images and pushes the newly created Docker images to the AWS Elastic

Container Registry.

• As soon as any Docker image is pushed to the AWS Elastic Container Registry, AWS

CodePipeline triggers the deployment to the Dev environment. Here, you can configure the

performance testing as well as security testing of the application. In Addition, you can

perform manual testing as required.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 141

• UAT and Production deployments are based on approval and are available on-demand. To

deploy to the UAT environment, you need to trigger the UAT deployment. Upon deployment

trigger, an approval mail is sent to the project manager or the concerned team. As soon as

the project manager approves the go-ahead, UAT deployment gets started automatically.

• Production deployment is also based on approval, but it is multi-level approval. To deploy a

production environment, you require the approval of all stakeholders, and the production

environment doesn’t get triggered automatically on receiving all the approvals. A manual

intervention mail is sent to the engineer who is supposed to deploy to production with a

checklist. During deployment, all the checklist points get verified before performing the

production deployment. In case any point of the checklist is not covered, then deployment

to the production gets rejected.

4.3 Configuring AWS Elastic container registry
This section explains how to configure the AWS Elastic Container Registry.

Perform the below steps to configure AWS Elastic Container Registry:

1. Open the Amazon ECR console at https://console.aws.amazon.com/ecr/repositories.

2. From the navigation bar, select the Region to create your repository.

3. In the navigation pane, select Repositories.

4. On the Repositories page, select Create repository.

5. Select Private in the Visibility settings.

6. Enter a unique name for a repository that is, omnidocs10.1web in the Repository Name.

7. For Tag immutability, do not enable the tag mutability setting for the repository. Repositories

are configured with immutable tags that prevent image tags from getting overwritten.

8. Enable the image scanning setting for the repository for Scan on push. Repositories that are

configured to scan on push start an image scan whenever an image is pushed.

9. Keep the Encryption settings as default.

https://console.aws.amazon.com/ecr/repositories

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 142

10. Select Create repository.

Figure 4.2

NOTE:

AWS ECR repositories can also be created while pushing Docker images to the AWS ECR using the AWS CLI.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 143

4.4 Push and Pull Docker images to or from AWS ECR
This section describes how to push and pull docker images from AWS ECR.

Prerequisites:

Ensure that you have installed the latest version of the AWS CLI and Docker.

Following are the steps to push, and pull Docker images to or from AWS ECR:

• Authentication

• Push

• Pull

Authentication:

1. Before you push or pull the Docker images, you need to authenticate the Docker client to the

AWS ECR.

2. Execute the below command to configure the AWS Accesskey and AWS SecretKey of the IAM

user that has the rights to push or pull Docker images to AWS ECR:
aws configure set aws_access_key_id <AWS_AccessKey>

aws configure set aws_secret_access_key <AWS_SecretKey>

3. Execute the below command to retrieve the authentication token and authenticate the Docker

client:
aws ecr get-login-password --region <AWS_Region> | docker login --username AWS

--password-stdin <AWS_AccountID>.dkr.ecr.<AWS_Region>.amazonaws.com

Push:

1. Before pushing the docker images to AWS ECR, you must create a repository to store them in.

2. Execute the below command to create a new repository if already not created:
aws ecr describe-repositories --repository-names <RepositoryName> || aws ecr

create-repository --repository-name <RepositoryName> --image-scanning-

configuration scanOnPush=true

3. Execute the below command to push the Docker images from your local machine to AWS ECR:
Docker tag <ImageName>:<ImageTag>

<AWS_AccountID>.dkr.ecr.<AWS_Region>.amazonaws.com/<ImageName>:<ImageTag>

docker push

<AWS_AccountID>.dkr.ecr.<AWS_Region>.amazonaws.com/<ImageName>:<ImageTag>

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 144

NOTE:

• Docker images might be shared in the form of a compressed tar file. As compressed Docker images cannot be used

directly, first you need to decompress them in a Docker image form, and then you can use it. In such a case, the client

needs to perform the following:

➢ Download the compressed Docker image file.

➢ Convert the compressed file into a Docker image using the Docker Load command.

Example: docker load –i C:\DockerImages\omnidocs110web.tar

➢ Re-tag the images with your own registry and push them up.

• To push any local Docker images to a repository, it is mandatory to first tag that image. We can also configure these

commands in Jenkins to execute them automatically.

4. Use the below batch scripts to configure the ‘Push Docker images to AWS ECR’ in Jenkins:
@echo off

set AWS_AccessKey= AKIAJENJGXXXXXXXXXXXXXXXXXXX

set AWS_SecretKey= G4tbmZNlv64EO5475G4XXXXXXXXXXXXXXX

set AWS_AccountID=678035612169

set AWS_Region=ap-south-1

set ImageName=omnidocsweb

set ImageTag=sp1

set BuildNumber=%ImageTag%-build-%BUILD_NUMBER%

aws configure set aws_access_key_id %AWS_AccessKey%

aws configure set aws_secret_access_key %AWS_SecretKey%

aws ecr get-login-password --region %AWS_Region% | docker login --username AWS

--password-stdin %AWS_AccountID%.dkr.ecr.%AWS_Region%.amazonaws.com

aws ecr describe-repositories --repository-names %ImageName% || aws ecr

create-repository --repository-name %ImageName% --image-scanning-configuration

scanOnPush=true

docker tag %ImageName%:%ImageTag%

%AWS_AccountID%.dkr.ecr.%AWS_Region%.amazonaws.com/%ImageName%:%ImageTag%

docker push

%AWS_AccountID%.dkr.ecr.%AWS_Region%.amazonaws.com/%ImageName%:%ImageTag%

docker tag %ImageName%:%ImageTag%

%AWS_AccountID%.dkr.ecr.%AWS_Region%.amazonaws.com/%ImageName%:%BuildNumber%

docker push

%AWS_AccountID%.dkr.ecr.%AWS_Region%.amazonaws.com/%ImageName%:%BuildNumber%

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 145

Figure 4.3

Pull:

1. Execute the below command to pull the Docker images from AWS ECR:
docker pull

<AWS_AccountID>.dkr.ecr.<AWS_Region>.amazonaws.com/<ImageName>:<ImageTag>

2. Use the below batch scripts to configure the Pull Docker images from AWS ECR in Jenkins:
@echo off

set AWS_AccessKey=AKIAJENJGXXXXXXXXXXXXXXXXXXX

set AWS_SecretKey=G4tbmZNlv64EO5475G4XXXXXXXXXXXXXXX

set AWS_AccountID=678035612169

set AWS_Region=ap-south-1

set ImageName=omnidocsweb

set ImageTag=sp1

aws configure set aws_access_key_id %AWS_AccessKey%

aws configure set aws_secret_access_key %AWS_SecretKey%

aws ecr get-login-password --region %AWS_Region% | docker login --username AWS

--password-stdin %AWS_AccountID%.dkr.ecr.%AWS_Region%.amazonaws.com

docker pull

%AWS_AccountID%.dkr.ecr.%AWS_Region%.amazonaws.com/%ImageName%:%ImageTag%

Figure 4.4

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 146

4.5 Configuring AWS CodePipeline
To configure the AWS CodePipeline, follow the below subsections:

• Creation of IAM Policy and IAM Role

• Creation of AWS CodeCommit Repository

• Creation of AWS CodeBuild Project

• Creation of AWS CodePipeline

4.5.1 Creating IAM policy and IAM role
Perform the below steps to create IAM Policy and Role:

1. Create an IAM policy with the name EKS-cluster-access with the following permissions:
 {

 "Version": "2012-10-17",

 "Statement": [

 {

 "Sid": "VisualEditor0",

 "Effect": "Allow",

 "Action": "eks:DescribeCluster",

 "Resource": "*"

 }

]

 }

2. Create another IAM policy with the name code-build-service-policy with the following

permissions:
{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Resource": [

 "arn:aws:logs:ap-south-1:678035612169:log-group:*"

],

 "Action": [

 "logs:CreateLogGroup",

 "logs:CreateLogStream",

 "logs:PutLogEvents"

]

 },

 {

 "Effect": "Allow",

 "Resource": [

 "arn:aws:s3:::codepipeline-ap-south-1-*"

],

 "Action": [

 "s3:PutObject",

 "s3:GetObject",

 "s3:GetObjectVersion",

 "s3:GetBucketAcl",

 "s3:GetBucketLocation"

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 147

]

 },

 {

 "Effect": "Allow",

 "Resource": [

 "arn:aws:codecommit:ap-south-1:678035612169:*"

],

 "Action": [

 "codecommit:GitPull"

]

 }

]

}

NOTE:
The policy code-build-service-policy is created for the AWS Region ap-south-1 only. If you want to create this IAM role
for other regions, then update the region in the JSON policy file. Use your AWS account ID as the place of
678035612169 in the above JSON policy file.

3. Create an IAM role with the name genesis-codebuild-eks and attach the policy EKS-cluster-
access and code-build-service-policy created in the previous step. It must be applied for the
codebuild service. This is required for the CodeBuild role to authenticate with the EKS cluster.

NOTE:
CodeBuild role has permission to authenticate the cluster but doesn’t have the requisite RBAC access to do any other
action on the cluster. Due to the reason that when an Amazon EKS cluster is created, the IAM entity user or role that
creates the cluster is automatically granted system masters permissions in the cluster's RBAC configuration. To grant
additional AWS users or roles the ability to interact with your cluster, you must edit the aws-auth ConfigMap within
Kubernetes.

4. Execute the below command to open the aws-auth ConfigMap in edit mode:
kubectl edit configmap aws-auth -n kube-system

5. Add the following under data.mapRoles:
- rolearn: <ARN of the created IAM role for CodeBuild>

 username: <Name of the created IAM role for CodeBuild>

 groups:

 - system:masters

For example,

- rolearn: arn:aws:iam::678035612169:role/genesis-codebuild-eks

 username: genesis-codebuild-eks

 groups:

 - system:masters

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 148

6. The final aws-auth ConfigMap must look somewhat like this:

apiVersion: v1

kind: ConfigMap

metadata:

 name: aws-auth

 namespace: kube-system

data:

 mapRoles: |

 - rolearn: arn:aws:iam::678035612169:role/EKSCluster-NodeInstanceRole-

1FRJ044RCC90Q

 username: system:node:{{EC2PrivateDNSName}}

 groups:

 - system:bootstrappers

 - system:nodes

 - rolearn: arn:aws:iam::678035612169:role/genesis-codebuild-eks

 username: genesis-codebuild-eks

 groups:

 - system:masters

Figure 4.5

The CodeBuild role has the requisite RBAC access.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 149

4.5.2 Creating AWS CodeCommit repository
Perform the below steps to create AWS CodeCommit Repository:
1. Open the AWS CodeCommit console at:

http://console.aws.amazon.com/codesuite/codecommit/home
2. Select Create repository.
3. For the Repository name, enter a unique name for your repository, that is, Genesis-

CodeCommit-Repository.
4. Select Create.

Figure 4.6

5. Upload all the YAML files shared with the Release Package to the created AWS CodeCommit

repository:

• AWS_ALB-IngressController.yml

• buildspec.yml

• buildspec_EasySearch.yml

• OmniDocsWeb.yml

• OmniDocsWeb_Services.yml

http://console.aws.amazon.com/codesuite/codecommit/home

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 150

• OmniDocsEJB.yml

• OmniDocsServices.yml

• EasySearch.yml

• TEM.yml

• OmniScanWeb7.0.yml

• OmniDocswopi.yml

NOTE:
The YAML file is a human-readable object configuration file that is used to deploy and manage the objects on the
Kubernetes cluster. In other words, it is a manifest file that contains the deployment descriptor of Docker images.

Figure 4.7

4.5.3 Creating AWS CodeBuild project
This section explains how to create AWS Code Build Project.

NOTE:

Use the upcoming steps as a reference to configure the Release Pipeline for the below Docker Images:

• OmniDocs Web

• OmniDocs Web_Services

• OmniDocs EJB

• OmniDocs Services

• TEM

• EasySearch

• OmniScanWeb7.0

• OmniDocs WOPI

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 151

Perform the below steps to create AWS Code Build Project:

1. Open the AWS CodeBuild console at:

http://console.aws.amazon.com/codesuite/codebuild/home

2. Select Create build project.

Specify the following. Once done, select Create build project.

3. Specify the following in the Project configuration.

i. Enter a unique name for your CodeBuild project that is, OmniDocs101Web in the Project

Name.

ii. (Optional) Enter a description of the build project to help other users understand the

project.

iii. (Optional) Select Enable Build badge. Build badge provides an embeddable, dynamically

generated image (badge) that displays the status of the latest build for a project.

iv. Restrict the concurrent build limit to start the project to 1.

v. Keep the other settings as default.

Figure 4.8

http://console.aws.amazon.com/codesuite/codebuild/home

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 152

4. Specify the following in the Source.

i. Select the AWS CodeCommit in the Source provider.

ii. Select the existing AWS CodeCommit repository Genesis-CodeCommit-Repository created

in the Creation of AWS CodeCommit Repository.

iii. Select Branch as main.

iv. Keep the other settings as default.

Figure 4.9

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 153

5. Specify the following in the Environment:

i. Select the Managed image in the Environment image.

ii. Select Amazon Linux 2 in the Operating system.

iii. Select Standard in the Runtime(s).

iv. For Image, select ‘aws/codebuild/amazonlinux2-x86_64-standard:3.0’.

v. Select Always use the latest image for this runtime image for the image version.

vi. Select the Existing service role genesis-codebuild-eks created in the Creation of IAM Policy

and IAM Role in the Service role.

NOTE:

Don’t select the checkbox Allow AWS CodeBuild to modify this service role so it can be used with this build

project. Also, keep the other settings as default.

Figure 4.10

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 154

6. Specify the following in the Buildspec.

i. Select the Use a buildspec file in the Build specification.

ii. Specify buildspec.yml in the Buildspec name - optional.

NOTE:

By default, CodeBuild looks for a file named buildspec.yml in the source code root directory. If your buildspec file uses a

different name or location, enter its path from the source root here (for example, buildspec-two.yml or

configuration/buildspec.yml).

Figure 4.11

7. Batch configuration: Leave with default settings.

8. Artifacts: Leave with default settings.

9. Specify the following in the Logs:

i. Select the CloudWatch logs – optional.

ii. Specify the Group name the same as the CodeBuild project name that is.,

OmniDocs101Web.

iii. For the Stream name, specify the codebuild.

Figure 4.12

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 155

10. Select Create build project.

NOTE:

The same CodeBuild project can be used for all types of stages like Dev, UAT, and Production or any other stage as per

the business requirement.

4.5.4 Creating AWS CodePipeline
The three stages are configured that is, Dev, UAT, and Production, and at each stage, the

deployment is quite different. You can have some more stages depending on the requirements.

NOTE:

Use the following steps as a reference to configure the Release Pipeline for the below Docker Images.

• OmniDocsWeb

• OmniDocsWeb_Services

• OmniDocsEJB

• OmniDocsServices

• EasySearch

• TEM

• OmniScanWeb7.0

• OmniDocs WOPI

Dev Stage: As soon as any Docker Image is pushed to the AWS Elastic Container Registry, AWS

CodePipeline triggers the deployment to the Dev environment.

UAT Stage: UAT and Production deployments are approval based and they are called on-demand.

To deploy to the UAT environment, triggers the UAT deployment. Once deployment is triggered, an

approval mail to the concerned team. Upon receiving approval, UAT deployment gets started

automatically.

Production Stage: Production Deployment is also based on approval based but it is multi-level

approval. To deploy to a production environment, you require the approval of multiple

stakeholders but deployment for the production environment is not get triggered automatically. A

manual intervention mail is sent to the engineer who is supposed to deploy to production with a

checklist. During the process, if the checklist points are not covered then the deployment to

production gets rejected.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 156

4.5.4.1 Configuring AWS CodePipeline for Dev Stage
Perform the below steps to configure the Dev Stage:

1. Open the AWS CodePipeline console at:

http://console.aws.amazon.com/codesuite/codepipeline/home

2. Select the Create pipeline.

Specify the required details in the following steps. Once complete, select Create pipeline at the

Review step:

3. Select pipeline settings:

i. Enter a unique name for your pipeline, that is, OmniDocs101Web-DevStage for the Pipeline

name.

ii. Select New service role for Service role.

iii. Select the checkbox Allow AWS CodePipeline to create a service role so it can be used with

this new pipeline.

iv. Keep the other settings as default and click Next.

Figure 4.13

4. Specify the following in the Add source stage:

i. Select the AWS CodeCommit for the Source provider.

http://console.aws.amazon.com/codesuite/codepipeline/home

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 157

ii. Select the existing AWS CodeCommit repository 'Genesis-CodeCommit-Repository’ created

in the Creation of AWS CodeCommit Repository for the Repository name.

iii. Select Main for the Branch name.

iv. Select the recommended option Amazon CloudWatch Events for Change detection options.

NOTE:

Amazon CloudWatch Events creates a CloudWatch event rule. As soon as the changes are done in the integrated AWS

CodeCommit repository, it triggers the pipeline. But do not trigger the AWS CodePipeline whenever there is a change in

the CodeCommit repository. The pipeline must be triggered whenever you push a new image to the container registry

like AWS ECR.

Refer to the following sections for the configuration of AWS ECR with CodePipeline to disable the CloudWatch event

rule once the pipeline is created.

v. Keep the other settings as default and click Next.

Figure 4.14

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 158

5. Specify the following in the Add build stage:

i. Select the AWS CodeBuild in the Build provider.

ii. Select a region in which you want to create your pipeline.

iii. Select the existing CodeBuild project OmniDocs101Web created in the Creation of AWS

CodeBuild Project.

iv. Create the below environment variables for Environment variables (optional):

Name Value Type

AWS_DEFAULT_REGION ap-south-1 Plaintext

AWS_CLUSTER_NAME Omnidocs-uat2 Plaintext

YAML_FILE OmniDocsWeb.yml Plaintext

CODE_PIPELINE_EXECUTION_ID #{codepipeline.PipelineExecutionId} Plaintext

• AWS_DEFAULT_REGION: Specify the region where the AWS EKS cluster is created.

• AWS_CLUSTER_NAME: Specify the name of the EKS cluster for the Dev stage.

• YAML_FILE: Specify the name of the YAML file that is stored in the AWS CodeCommit

repository and that is used to deploy the OmniDocs10.1Web container for the Dev stage.

• CODE_PIPELINE_EXECUTION_ID: This variable is just created for logging purposes so that

you can track the build-id and its initiated pipeline.

v. For Build type, select Single build and Click Next.

Figure 4.15

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 159

6. In the Add deploy stage: Skip the deploy stage.

Figure 4.16

7. In the Review, select Create pipeline.

Figure 4.17

NOTE:

As soon as you create the pipeline, it starts the first pipeline execution. This execution failed as expected if you have not

yet integrated the AWS ECR into the pipeline. You need to do the same.

Perform the below steps to integrate AWS ECR into the AWS CodePipeline:

1. Open the created pipeline OmniDocs101Web-DevStage in Edit mode.

2. Select the Edit source stage.

3. Select + Add action.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 160

Figure 4.18

4. In the Edit action panel, specify the unique Action name. that is., AWS-ECR-Registry

5. Select the Amazon ECR in Action provider.

6. Select the omnidocs10.1web Docker image that needs to deploy to the Dev stage in the

Repository name.

7. In Image tag – optional, select the image tag that you want to use to set up the continuous

deployment trigger.

8. In Variable namespace – optional, specify the unique namespace, that is, AWS-ECR. This is

required to use its output variable in the following sections.

9. In Output artifacts, specify the unique variable name that is, SourceArtifact1. SourceArtifact is

already used by AWS CodeCommit action.

10. Click Done.

Figure 4.19

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 161

11. Click Done on the Edit source stage.

12. Select the Edit build stage.

13. Click Edit in the AWS CodeBuild action.

Figure 4.20

14. Add three new environment variables as given in the table below:

Name Value Type
IMAGE_REGISTRY_ID #{AWS-ECR.RegistryId} Plaintext

IMAGE_REPOSITORY_NAME #{AWS-ECR.RepositoryName} Plaintext

IMAGE_TAG #{AWS-ECR.ImageTag} Plaintext

Here, AWS-ECR is the name of the variable namespace, created in the Amazon ACR action.

Figure 4.21

15. Click Done on the edit action panel.

16. In the Edit build stage, click Done.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 162

17. Click Save to save the pipeline.

Figure 4.22

NOTE:

Once the AWS ECR is integrated into the pipeline, it creates a new CloudWatch event rule that acts as a deployment

trigger. Now, whenever you push the new Docker image with the same image tag name that is defined in the Amazon

ECR action in the source stage, it triggers the pipeline.

As discussed in the Add Source Stage, the AWS CodeCommit action creates a new CloudWatch event rule, and it

triggers the AWS CodePipeline whenever there is a change in the CodeCommit repository in which the CloudWatch

event rule is disabled once the pipeline is created.

Perform the below steps to disable the CloudWatch event rule created against the AWS

CodeCommit action:

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/

2. In the Events tab, click Rules on the navigation panel.

3. Search the rule created against the AWS CodeCommit repository Genesis-CodeCommit-

Repository created in the Creation of AWS CodeCommit Repository.

Figure 4.23

https://console.aws.amazon.com/cloudwatch/

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 163

4. Select the rule, go to the Actions menu, and select Disable or Delete. It does not trigger the

pipeline whenever any change is done in the AWS CodeCommit repository.

Figure 4.24

5. Click Release change to trigger the pipeline manually.

Figure 4.25

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 164

4.5.4.2 Configuring notification
This section contains the configuration of notification using the AWS SNS topic, to notify the

recipient(s) about the pipeline execution status whether it succeeded or failed. The following are

the steps to configure notifications:

1. Create an SNS topic

2. Create a subscription to the SNS topic

3. Create a Lambda function

4. Create a CloudWatch event rule

Perform the below steps to create an SNS topic:

1. Sign in to the Amazon SNS console https://console.aws.amazon.com/sns/home

2. Select the Region to create your repository on the navigation panel.

3. Select Topics in the left navigation panel.

4. Select Create topic.

5. By default, the console creates a FIFO topic, select Standard.

6. Enter the Name for the topic such as SNSTopic1 in the Details section.

7. In Display name – optional, use display name such as DevOps Admin.

8. Select Create topic.

Figure 4.26

https://console.aws.amazon.com/sns/home

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 165

Perform the below steps to create a subscription to the SNS topic:

1. In the left navigation pane, select Subscriptions.

2. Click Create subscription. The Create Subscription screen appears.

3. Select the Topic ARN.

4. Select Email for Protocol.

5. In Endpoint, enter an email address to receive notifications.

6. Select the Create subscription.

Figure 4.27

7. Check your email inbox and select Confirm subscription in the email from AWS Notifications. The

sender ID is usually no-reply@sns.amazonaws.com. The Amazon SNS opens in a web browser and

displays a subscription confirmation with your subscription ID.
8. Create more subscriptions and attached them to the same topic that you created to send emails

to multiple recipients.
9. Once your subscription is created, click Confirm.

no-reply@sns.amazonaws.com

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 166

Perform the below steps to create a Lambda function:

1. Open the function page on the lambda console:

https://console.aws.amazon.com/lambda/home

2. Select Create function.

3. In the Function name, specify the unique function name such as lambda-fuction1.

4. In Runtime, select python 3.8 or the latest version.

5. Keep the other settings as default and select the Create function.

Figure 4.28

6. Under the Code tab, select lambda_function.py.

7. Replace the default code snippet using the below code snippet and select Deploy:

import json

import boto3

sns = boto3.client('sns')

pipeline_sns_map = {

 "pipeline1": "sns_arn_1",

 "pipeline2": "sns_arn_1"

 "pipeline3": "sns_arn_2"

}

def lambda_handler(event, context):

 detail = event['detail']

 pipeline = detail['pipeline']

 execution_id = detail['execution-id']

 state = detail['state']

https://console.aws.amazon.com/lambda/home

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 167

 sns1 = pipeline_sns_map[pipeline]

 subject = "Pipeline " + pipeline + " has " + state

 message = "Pipeline name : " + pipeline + " has " + state + " with

execution id : " + execution_id

 # print(message)

 response = sns.publish(

 TopicArn = sns1,

 Message= message,

 Subject=subject

)

 return(response)

8. In the above code snippet, update pipeline name(s) in pipeline1, pipeline2, and pipeline3 as

well as update the SNS topic(s) ARN at the place of sns_arn_1, sns_arn_2.

NOTE:

You can use the same SNS topic for all the pipelines or different SNS topics for each pipeline. Add an entry for each

newly created pipeline and its associated SNS topic to use them.

Figure 4.29

9. Go to the Configuration tab and select Permissions.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 168

10. Select the created IAM role for this lambda function. The IAM role Summary screen appears.

Figure 4.30

11. Select the Add inline policy.

12. In Service, select the SNS.

13. In Actions, select Publish.

14. Select All resources in Resources.

15. Select the Review policy.

Figure 4.31

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 169

16. Specify the policy name such as sns-lambda-policy.

17. Select Create policy.

Perform the below steps to create a CloudWatch event rule:

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/

2. In the Events tab, select the Rules on the navigation pane.

3. Select the Create rule.

4. Select the Event Patten radio button in the Event Source.

5. Select the Service Name as CodePipeline using the dropdown.

6. Select the Event Type as CodePipeline Pipeline Execution State Change using the dropdown.

7. Select the Specified state(s) and select FAILED and SUCCEEDED states.

8. Click +Add target* given on the upper-right.

9. Select the Lambda function as a target.

10. For Function*, select the existing function name lambda-function1.

11. Select the Configure details given at the lower right.

Figure 4.32

12. Specify the Unique Rule Name and Description on the Rule definition tab.

https://console.aws.amazon.com/cloudwatch/

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 170

4.5.4.3 Configuring AWS CodePipeline for UAT stage
UAT deployments are based on approval and are available on-demand. To deploy to the UAT

environment, you need to trigger the UAT deployment. Once deployment is triggered, an approval

mail is sent to the project manager or the concerned team. Upon receiving the approval, the UAT

deployment gets started automatically.

Perform the below steps to configure the UAT Stage:

1. Open the AWS CodePipeline console at:

http://console.aws.amazon.com/codesuite/codepipeline/home

2. On the Welcome tab, select the Create pipeline.

3. Specify the required details in the following steps. Once complete, select Create pipeline at the

Review step:

Select the pipeline settings and specify the following:

i. Enter a unique name for your pipeline that is, OmniDocs101Web-UATStage in the Pipeline

name.

ii. Select the New service role in the Service role.

iii. Select the checkbox Allow AWS CodePipeline to create a service role so it can be used with

this new pipeline.

iv. Keep the other settings as default and click Next.

Figure 4.33

http://console.aws.amazon.com/codesuite/codepipeline/home

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 171

4. Add source stage and specify the following:

i. Select the AWS CodeCommit in the Source provider.

ii. Select the existing AWS CodeCommit repository Genesis-CodeCommit-Repository created

in Creation of AWS CodeCommit Repository in Repository name.

iii. Select the Main in the Branch name.

iv. Select the recommended option Amazon CloudWatch Events in the Change detection

options.

NOTE:

Amazon CloudWatch Events creates a CloudWatch event rule. Once any changes are done in the integrated AWS

CodeCommit repository, it triggers the pipeline. But do not trigger the AWS CodePipeline whenever there is a change in

the CodeCommit repository. The pipeline must be triggered whenever you push a new image to the container registry

like AWS ECR. Refer to the following sections for the configuration of AWS ECR with CodePipeline to disable the

CloudWatch event rule once the pipeline is created.

v. Keep the other settings as default and click Next.

Figure 4.34

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 172

5. Add the build stage and specify the following:

i. Select the AWS CodeBuild in the Build provider using the dropdown.

ii. Select a Region in which you want to create your pipeline using the dropdown.

iii. Select the existing CodeBuild project OmniDocs101Web created in the Creation of AWS

CodeBuild Project.

iv. For Environment variables – optional, create the below environment variables:

Name Value Type
AWS_DEFAULT_REGION ap-south-1 Plaintext

AWS_CLUSTER_NAME Omnidocs-uat2 Plaintext

YAML_FILE OmniDocs10.1Web.yml Plaintext

CODE_PIPELINE_EXECUTION_ID #{codepipeline.PipelineExecutionId} Plaintext

• AWS_DEFAULT_REGION: Specify the region where the AWS EKS cluster is created.

• AWS_CLUSTER_NAME: Specify the EKS cluster name created for the UAT stage.

• YAML_FILE: Specify the YAML file name that is stored in the AWS CodeCommit

repository and that is used to deploy the OmniDocs10.1Web container for UAT Stage.

• CODE_PIPELINE_EXECUTION_ID: This variable is just created for logging purposes so

that you can track the build-ID and its initiated pipeline.

v. In Build type, select the Single build and click Next.

Figure 4.35

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 173

6. In the Add deploy stage, skip the deploy stage.

Figure 4.36

7. In the Review, select Create pipeline.

Figure 4.37

NOTE:

Once the pipeline is created, it starts its first pipeline execution. This execution fails as expected when you have not yet

integrated the AWS ECR into the pipeline. You must perform the same.

Perform the below steps to integrate AWS ECR into the AWS CodePipeline:

1. Open the created pipeline OmniDocs101Web-UATStage in Edit mode.

2. Select the Edit source stage.

3. Select + Add action.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 174

Figure 4.38

4. In the Edit action panel, specify the unique Action name. that is, AWS-ECR-Registry.

5. Select the Amazon ECR in the Action provider.

6. Select the omnidocs10.1web in the Repository name. It enables the Docker image to deploy to

the Dev stage.

7. In Image tag – optional, select the image tag that you want to use to set up the continuous

deployment trigger.

8. In Variable namespace – optional, specify the unique namespace that is, AWS-ECR. This is

required while using its output variable in the following sections.

9. In Output artifacts, specify the unique variable name. that is, SourceArtifact1. SourceArtifact is

already used by AWS CodeCommit action.

10. Click Done.

Figure 4.39

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 175

11. Click Done on the Edit source stage.

12. Select the Edit build stage.
13. Click the Edit icon for AWS CodeBuild action.

Figure 4.40

14. Add the three new environment variables given in the table below:

Name Value Type
IMAGE_REGISTRY_ID #{AWS-ECR.RegistryId} Plaintext

IMAGE_REPOSITORY_NAME #{AWS-ECR.RepositoryName} Plaintext

IMAGE_TAG #{AWS-ECR.ImageTag} Plaintext

Where, AWS-ECR is the name of the variable namespace, created in Amazon ACR action.

Figure 4.41

15. On the Edit action panel, click Done.

16. Click Done on the Edit build stage. Since this is the UAT stage and it must be an approval-based

pipeline.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 176

17. Select the + Add stage in between the Source stage and Build stage.

Figure 4.42

18. Specify the Stage name such as Approval.

19. Click +Add action group under the Approval stage.

Figure 4.43

20. Specify the unique action name such as Approval-for-UAT in the Action name.

21. Select the Manual approval in the Action provider.

22. Select the ARN of SNSTopic1 created in Configuration of Notification in the SNS topic ARN –

optional.

23. Specify a comment to display for the reviewer in the email notifications or the console in

Comments-optional. For Example, provide your approval for UAT deployment.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 177

24. Keep the other settings as default and click Done.

Figure 4.44

25. Click Done on the Approval stage.

26. Click Save in the upper-right to save the pipeline.

Figure 4.45

NOTE:

Upon integration of the AWS ECR into the pipeline, this adds the target into the existing CloudWatch event rule that

acts as a deployment trigger. Now, whenever you push the new Docker image with the same image tag name that is

defined in the Amazon ECR action in the source stage, it triggers the pipeline. But as per the UAT deployment

specification, UAT deployments are based on approval and are available on demand. Disable the continuous

deployment of the UAT pipeline.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 178

Perform the below steps to remove the target from the existing CloudWatch event rule created

against AWS ECR action:

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/

2. Select Rules in the Events. Search the rule created against the Amazon ECR with the same image

tag name defined in the source stage.

Figure 4.46

Select the rule, go to the Actions menu and select Disable/Delete.

Figure 4.47

https://console.aws.amazon.com/cloudwatch/

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 179

Now, it does not trigger the pipeline whenever you push the Docker image to the AWS ECR.

NOTE:

As discussed in the Add source stage, the AWS CodeCommit action creates a new CloudWatch event rule, and it triggers

the AWS CodePipeline whenever there is a change in the CodeCommit repository. You can disable the CloudWatch

event rule once the pipeline is created.

Perform the below steps to disable the CloudWatch event rule created against AWS CodeCommit

action:

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/

2. Select Rules under the Events tab given on the navigation panel.

3. Search the rule created against the AWS CodeCommit repository Genesis-CodeCommit-

Repository created in the creation of the AWS CodeCommit Repository.

Figure 4.48

https://console.aws.amazon.com/cloudwatch/

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 180

4. Select the rule, go to the Actions menu, and select Disable or Delete.

Figure 4.49

Now, it does not trigger the pipeline whenever you make any changes in the AWS CodeCommit

repository.

NOTE:

Add an entry in the Lambda function lambda_function1 created in Configuration of AWS CodePipeline for UAT Stage,

for each newly created pipeline and its associated SNS topic that you can use. This is required to notify the recipient(s)

about the pipeline execution status whether it succeeded or failed.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 181

5. Add an entry of the pipeline OmniDocs101Web-UATStage in the lambda function

lambda_function1.

Figure 4.50

6. Click Release change to trigger the pipeline manually.

Figure 4.51

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 182

4.5.4.4 Configuring AWS CodePipeline for production stage
The production deployment is based on approval, but it has a multi-level approval system. To

deploy a production environment, you require the approval of all stakeholders. Once approval is

received from all the stakeholders, the deployment to the production environment is not triggered

automatically. Manual intervention mail is sent to the engineer who is supposed to deploy to

production with a checklist. If all the checklist points are not covered, then the deployment to

production gets rejected.

Production deployment has a multi-level approval system. To support this multi-level approval, you

must create multiple SNS topics in reference to create an SNS topic and create a subscription to

the SNS topic with different subscriptions.

Perform the below steps to configure the Production Stage

1. Open the AWS CodePipeline console at:

http://console.aws.amazon.com/codesuite/codepipeline/home

2. Click Create pipeline given on the Welcome tab.

Specify the required details in the following steps. Once complete, click Create pipeline at the

Review step:

3. Specify the following on the Select pipeline settings:

i. Enter a unique name for your pipeline that is, OmniDocs101Web-ProdStage in the Pipeline

name.

ii. Select the New Service Role in the Service role.

iii. Select the checkbox Allow AWS CodePipeline to create a service role so it can be used with

this new pipeline.

iv. Keep the other settings as default and click Next.

http://console.aws.amazon.com/codesuite/codepipeline/home

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 183

Figure 4.52

4. Specify the following on the Add source stage:

i. Select the AWS CodeCommit in the Source provider.

ii. Select the existing AWS CodeCommit repository Genesis-CodeCommit-Repository created in

the Configuration of Notification in the Repository name.

iii. Select main in the Branch name.

iv. In Change detection options, select the recommended option Amazon CloudWatch Events.

NOTE:

Amazon CloudWatch Events creates a CloudWatch event rule. As soon as you make any change in the integrated AWS

CodeCommit repository, it triggers the pipeline. But you do not want to trigger the AWS CodePipeline whenever there

is a change in the CodeCommit repository. The pipeline must be triggered whenever you push a new image to the

container registry like AWS ECR. You can see the configuration of AWS ECR with CodePipeline in the following sections.

So, you can disable the CloudWatch event rule once the pipeline is created.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 184

v. Keep the other settings as default and click Next.

Figure 4.53

5. Specify the following in the Add build stage:

i. In the Build provider, select AWS CodeBuild.

ii. In the Region, select a region in which you want to create your pipeline.

iii. In the Project name, select the existing CodeBuild project OmniDocs101Web created in the

creation of the AWS CodeBuild Project.

iv. In the Environment variables – optional, create the below environment variables:

Name Value Type

AWS_DEFAULT_REGION ap-south-1 Plaintext

AWS_CLUSTER_NAME Omnidocs-uat2 Plaintext

YAML_FILE OmniDocs10.1Web.yml Plaintext

CODE_PIPELINE_EXECUTION_ID #{codepipeline.PipelineExecutionId} Plaintext

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 185

• AWS_DEFAULT_REGION: Specify the region where the AWS EKS cluster is created.

• AWS_CLUSTER_NAME: Specify the name of the EKS cluster created for the PROD stage.

• YAML_FILE: Specify the name of the YAML file that is stored in the AWS CodeCommit

repository and is used to deploy the OmniDocs10.1Web container for the PROD Stage.

• CODE_PIPELINE_EXECUTION_ID: This variable is just created for logging purposes so that

you can track the build-id and its initiated pipeline.

6. For Build type, select the Single build and click Next.

Figure 4.54

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 186

7. In the Add deploy stage, skip the deploy stage.

Figure 4.55

8. In the Review, click Create pipeline.

Figure 4.56

NOTE:

As soon as you create the pipeline, it starts its first pipeline execution. This execution failed as expected when you have

not yet integrated the AWS ECR into the pipeline. You need to do the same.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 187

9. Specify the following to integrate the AWS ECR into the AWS CodePipeline:

i. Open the created pipeline OmniDocs101Web-ProdStage in Edit mode.

ii. Select the Edit source stage.

iii. Select + Add action.

Figure 4.57

iv. In the Edit action panel, specify the unique Action name, that is, AWS-ECR-Registry

v. In the Action provider, select the Amazon ECR.

vi. In the Repository name, select the omnidocs10.1web Docker image that needs to deploy to

the Prod stage.

vii. In the Image tag – optional, select the image tag that you want to use to set up the

continuous deployment trigger.

viii. In the Variable namespace – optional, specify the unique namespace, that is, AWS-ECR.

This is required to use its output variable in the following sections.

ix. In the Output artifacts, specify the unique variable name, that is, SourceArtifact1.

SourceArtifact is already used by AWS CodeCommit action.

x. Click Done.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 188

Figure 4.58

xi. Click Done on the Edit source stage.

xii. Select the Edit build stage.

xiii. Click the Edit icon for AWS CodeBuild action.

Figure 4.59

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 189

10. Add the three new environment variables as given in the table below:

Name Value Type

IMAGE_REGISTRY_ID #{AWS-ECR.RegistryId} Plaintext

IMAGE_REPOSITORY_NAME #{AWS-ECR.RepositoryName} Plaintext

IMAGE_TAG #{AWS-ECR.ImageTag} Plaintext

Where, AWS-ECR is the name of the variable namespace, created in Amazon ACR action.

Figure 4.60

11. On the Edit Action Panel, click Done.

12. On the Edit build stage, click Done. Since this is the PROD stage and it must be an approval-

based pipeline then select the + Add stage.

Figure 4.61

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 190

13. Specify the Stage name such as Approval.

i. Click +Add action group under the Approval stage.

Figure 4.62

ii. Specify the unique action name such as Approval-for-PROD in the Action name.

iii. Select the Manual approval in the Action provider.

iv. Select the ARN of SNSTopic1 created in Configuration of Notification in the SNS topic ARN –

optional.

v. Specify a comment to display for the reviewer in the email notifications or the console in

Comments-optional. For Example, provide your approval for PROD deployment.

vi. Keep the other settings as default and click Done.

Figure 4.63

14. The pipeline has a multi-level approval system, you need to add multiple Approval actions with

different SNS topics.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 191

15. Click + Add action under the Approval stage and specify the following:

Figure 4.64

i. Specify the unique action name such as Approval-for-PROD-2 in the Action name.

ii. Select Manual approval in the Action provider.

iii. In the SNS topic ARN – optional, select the ARN of SNSTopic2 created in the configuration

of notification.

iv. For Comments – optional, specify the comment to display for the reviewer in email

notifications or the console, for example, provide your approval for PROD deployment.

v. Keep the other settings as default and click Done.

Figure 4.65

vi. Click Done.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 192

vii. Click Save to save the pipeline.

Figure 4.66

NOTE:

As soon as you integrate the AWS ECR into the pipeline, it adds to the existing CloudWatch event rule that acts as a

deployment trigger. Now, whenever you push the new Docker image with the same image tag name that is defined in

the Amazon ECR action in the source stage, it triggers the pipeline. But as per the PROD deployment specification, PROD

deployments are approval based and are available on-demand. So, you need to disable the continuous deployment for

the PROD pipeline.

Perform the below steps to Remove the target from the existing CloudWatch event rule created

against AWS ECR action:

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. Go to the Rules given under Events in the navigation pane.

3. Search the rule created against the Amazon ECR with the same image tag name that is defined

in the source stage.

https://console.aws.amazon.com/cloudwatch/

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 193

Figure 4.67

4. Select the rule, go to the Actions menu, and select Disable or Delete.

Figure 4.68

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 194

Now, it does not trigger the pipeline whenever you push the Docker image to the AWS ECR.

NOTE:

As discussed in the Add source stage, the AWS CodeCommit action creates a new CloudWatch event rule, and it

triggers the AWS CodePipeline whenever there is a change in the CodeCommit repository. You can disable the

CloudWatch event rule once the pipeline is created.

Perform the below steps to disable the CloudWatch event rule created against AWS CodeCommit

action:

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. Go to the Rules under Events in the navigation pane.

3. Search the rule created against the AWS CodeCommit repository Genesis-CodeCommit-

Repository.

Figure 4.69

https://console.aws.amazon.com/cloudwatch/

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 195

4. Select the rule, go to the Actions menu, and select Disable or Delete.

Figure 4.70

Now, it does not trigger the pipeline whenever you make any change in the AWS CodeCommit

repository.

NOTE:

As per the production deployment specification, even after taking approvals from all stakeholders, the deployment to

the production environment is not triggered automatically. A manual intervention mail is sent to the engineer who is

supposed to deploy to production with a checklist.

Configuration of Manual Intervention Mail:

To configure the manual intervention mail, follow the below steps:

• Create an SES identity

• Create a Lambda function

• Add a stage to the PROD pipeline

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 196

Create an SES identity:

In AWS SES, an identity is an email address or domain that you use to send an email. Before

sending/receiving an email using AWS SES, you must verify each identity that you are going to use

as a sender or recipient. In other words, you can say that a verified identity is an email address or

domain that you have proven that you own.

To create a verified SES identity, follow the below steps:

1. Sign in to the Amazon SES console https://console.aws.amazon.com/ses/home

2. In the console, use the region selector to select the AWS Region where want to verify the email

address.

3. Select the Verified identities under Configuration in the navigation pane.

4. Select the Create identity.

5. On the Create identity page, select Identity type as Email Address.

6. Specify the email address that you want to use as sender or recipient.

7. Click Create identity.

Figure 4.71

https://console.aws.amazon.com/ses/home

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 197

8. Select the inbox for the email address for verification and receives a message with the following

subject line: Amazon Web Services - Email Address Verification Request in region

RegionName, where RegionName is the name of the AWS Region.

9. Click the link in the message. A confirmation message appears You have successfully verified an

email address.

Create a Lambda function

1. Open the function page on the lambda console:

https://console.aws.amazon.com/lambda/home

2. Select Create function.

3. In the Function name, specify the unique function name such as lambda-fuction-ses.

4. In the Runtime, select python 3.8 or the latest version. Keep the other settings as default.

5. Select Create function.

Figure 4.72

6. Under the Code tab, select lambda_function.py.

7. Replace the default code snippet using the below code snippet, and select Deploy:

import boto3

from botocore.exceptions import ClientError

Create a new Codepipeline event to set the Job status

code_pipeline = boto3.client('codepipeline')

def lambda_handler(event, context):

https://console.aws.amazon.com/lambda/home

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 198

 #Getting JobID of the pipeline

 JobId=event['CodePipeline.job']['id']

execution_id=event['CodePipeline.job']['data']['actionConfiguration']['configu

ration']['UserParameters']

 # Update vivek_kumar@abc.co.in with your "From" address. This address must

be verified with Amazon SES.

 SENDER = "DevOps Admin <vivek_kumar@abc.co.in>"

 #Update ToRecipients, CcRecipients, and BccRecipients addresses. If your

account is still in the sandbox, this address must be verified.

 ToRecipients = ["vivek_kumar@abc.co.in","vivekkumarpandey185@gmail.com"]

 #CcRecipients = ["vivek_kumar@abc.co.in"]

 #BccRecipients = ["vivek_kumar@abc.co.in"]

 # If necessary, replace ap-south-1 with the AWS Region you're using for

Amazon SES.

 AWS_REGION = "ap-south-1"

 # The subject line for the email.

 SUBJECT = "Manual Intervention Mail for the "+execution_id

 # The HTML body of the email.

 BODY_HTML = """<html>

<head></head>

<body>

<pre><p style="color:#1F4E79">Dear Recipient,

Before deploying to the production, make sure that the below checklist points

are completed:

 • All the Major and Catastrophic bugs should be fixed.

 • The latest images should be thoroughly tested on the Dev and UAT stages.

 • Approval has been taken from all stakeholders.

 • Deployment downtime has been taken from the client.

Regards:</BR>DevOps Admin

</p></pre>

</body>

</html>"""

 # The character encoding for the email.

 CHARSET = "UTF-8"

 # Create a new SES resource and specify a region.

 client = boto3.client('ses',region_name=AWS_REGION)

 # Try to send the email.

 try:

 #Provide the contents of the email.

 response = client.send_email(

 Destination={'ToAddresses':ToRecipients},

#Destination={'ToAddresses':ToRecipients,'CcAddresses':CcRecipients},

#Destination={'ToAddresses':ToRecipients,'CcAddresses':CcRecipients,'BccAddres

ses':BccRecipients},

 Message={

 'Body': {

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 199

 'Html': {

 'Charset': CHARSET,

 'Data': BODY_HTML,

 },

 },

 'Subject': {

 'Charset': CHARSET,

 'Data': SUBJECT,

 },

 },

 Source=SENDER,

)

 # Display an error if something goes wrong.

 except ClientError as e:

 print("Email is not sent!"),

 print(e.response['Error']['Message']),

 put_job_failure(JobId, 'Unable to send mail')

 else:

 print("Email sent! with below Message ID:"),

 print(response['MessageId']),

 put_job_success(JobId, "Mail sent successfully")

def put_job_success(job, message):

 print('Putting job success')

 print(message)

 code_pipeline.put_job_success_result(jobId=job)

def put_job_failure(job, message):

 print('Putting job failure')

 print(message)

 code_pipeline.put_job_failure_result(jobId=job, failureDetails={'message':

message, 'type': 'JobFailed'})

8. In the above lambda function, you can update the following:

• SENDER: You can update your email ID in the From address. This address must be verified

with Amazon SES.

• ToRecipients: Specify the multiple ToAddresses separated by a comma (,). These email

addresses must be verified.

• CcRecipients and BccRecipients: By-default, CcRecipients and BccRecipients are

commented. If you want to use these then you just uncomment at two places.

• AWS_REGION: If required, replace ap-south-1 with the AWS Region you are using for

Amazon SES.

• SUBJECT: Update the email subject line as per your requirement.

• BODY_HTML: Update the mail body in HTML form.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 200

Figure 4.73

9. Go to the Permissions under the Configuration tab.

10. Select the created IAM role for this lambda function. The IAM role Summary screen appears.

Figure 4.74

11. Select Add inline policy.

12. Select SES in the Service.

13. Select SendEmail and SendRawEmail in the Actions.

14. Select All resources in the Resources.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 201

15. Click Review policy.

Figure 4.75

16. Specify the policy name such as ses-lambda-policy.

17. Select the Create policy. Add another inline policy by selecting Add inline policy.

18. Select the CodePipeline in the Service.

19. Select the PutJobSuccessResult and PutJobFailureResult in the Actions.

By default, the above actions support all resources so there is no need to select.

20. Select Review policy.

Figure 4.76

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 202

21. Specify the policy name such as codepipelie-lambda-policy and select Create policy.

Add a stage to the PROD pipeline:

NOTE:

As per the production deployment specification, even after taking approvals from all stakeholders, the deployment to

the production environment is not triggered automatically. A manual intervention mail is sent to the engineer who is

supposed to deploy to production with a checklist. If all the checklist points are covered or not, then the deployment to

the production gets rejected. To handle this use case, you need to add a stage just after the Approval stage and add 2

actions: Firstly, execute the Lambda function, and secondly, Manual approval action without the SNS topic.

To add a stage to the PROD pipeline, follow the below steps:

1. Open the created pipeline OmniDocs101Web-ProdStage in Edit mode.

2. Select + Add stage and specify the stage name such as Manual-Intervention.

Figure 4.77

3. Specify the following in the Manual-Intervention stage:

i. Click +Add action group under the Manual-Intervention stage.

Figure 4.78

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 203

ii. Specify the action name such as Execute-Lambda in the Action name.

iii. Select AWS Lambda in the Action provider.

iv. Select the AWS region where the Lambda function is created in the Region.

v. Select lambda function lambda-function-ses in the Function name.

vi. In the User parameters – optional, specify the parameters as given below:

Pipeline “<Name of the Pipeline>" with Execution Id

"#{codepipeline.PipelineExecutionId}"

For example,

Pipeline "OmniDocs101Web-ProdStage" with Execution Id

"#{codepipeline.PipelineExecutionId}"

vii. Keep the other settings as default.

viii. Click Done.

Figure 4.79

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 204

4. To add another action for the Manual approval, click +Add action under the Manual-

Intervention stage and specify the following:

Figure 4.80

i. Specify the Action name that is, as Manual-Approval.

ii. Select Manual approval in the Action provider.

iii. For Comments – optional, specify the comment to display for the reviewer in email

notifications or the console.

Ensure that all the checklist points shared over the mail are completed for the Pipeline "

OmniDocs101Web-ProdStage " with Execution Id "#{codepipeline.PipelineExecutionId}".

Where OmniDocs101Web-ProdStage is the name of the pipeline.

iv. Keep the other settings as default and click Done.

Figure 4.81

v. Click Done on the Manual-Intervention stage.

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 205

vi. Click Save in the upper-right to save the pipeline.

Figure 4.82

NOTE:

To add an entry in the Lambda function lambda_function1 created in Creation of AWS CodeCommit Repository for

each newly created pipeline and its associated SNS topic that you can use. This is required to notify the recipient(s)

about the pipeline execution status whether it is succeeded or failed.

5. Add an entry of the pipeline ‘OmniDocs101Web-ProdStage’ in the lambda function

lambda_function1.

Figure 4.83

OmniDocs Configuration and Deployment Guide for AWS Version: 11.3 Page 206

6. Trigger the pipeline manually by clicking on Release change.

Figure 4.84

	Configuration and Deployment Guide for AWS
	1 Preface
	1.1 Revision history
	1.2 Intended audience
	1.3 Documentation feedback
	1.4 Third-party product information

	2 Configuring AWS Kubernetes cluster
	2.1 Creating an IAM user
	2.2 Creating VPC
	2.3 Creating subnets
	2.4 Creating internet gateway
	2.5 Creating route table
	2.6 Creating an IAM role
	2.7 Creating security group
	2.8 Creating EKS cluster
	2.9 Creating key pair
	2.10 Provisioning Kubernetes worker nodes using cloud formation
	2.11 Adding inbound rule in EC2 instance
	2.12 Enabling worker node to join EKS cluster
	2.13 Running Kubectl from local machine
	2.14 Creating EFS
	2.15 Mounting EFS to worker nodes
	2.16 Configuring Kubernetes dashboard
	2.17 Configuring AWS load balancer controller
	2.18 Configuring AWS Elastic Redis cache
	2.19 Registering domain using route-53
	2.20 Generating SSL certificate against registered domain
	2.21 Cluster autoscaler
	2.21.1 Node group IAM policy
	2.21.2 Updating auto scaling group
	2.21.3 Deploying cluster AutoScaler
	2.21.4 Viewing cluster AutoScaler logs

	2.22 Setting CloudWatch container insights

	3 Deploying OmniDocs containers
	3.1 Prerequisites
	3.2 Deliverables
	3.2.1 Docker images
	3.2.2 Configuration files
	3.2.3 YAML files

	3.3 Product's YAML files changes
	3.4 AWS Load Balancer Controller YAML files changes
	3.5 Configuration files changes
	3.5.1 Prerequisites
	3.5.2 OmniDocsWeb changes
	3.5.3 Wrapper changes
	3.5.4 AlarmMailer changes
	3.5.5 LDAP changes
	3.5.6 SSO changes
	3.5.7 Scheduler changes
	3.5.8 ThumbnailManager changes
	3.5.9 TEM changes
	3.5.10 EasySearch changes
	3.5.11 WOPI changes
	3.5.12 OmniScanWeb changes

	3.6 Deploying containers
	3.7 Creating cabinet and data source
	3.7.1 Getting started with OSA
	3.7.2 Registering JTS server
	3.7.3 Connecting OSA to the JTS server
	3.7.4 Creating cabinet
	3.7.5 Associating cabinet
	3.7.6 Creating data source
	3.7.7 Registering cabinet
	3.7.8 Creating Site and Volume

	3.8 EasySearch Post-Deployment changes
	3.9 Registering cabinet in OmniScanWeb
	3.10 Creating secret manager policy and secrets
	3.10.1 Creating secret for Alarm Mailer
	3.10.2 Creating secret for LDAP
	3.10.3 Creating secret for TEM
	3.10.4 Creating secret for EasySearch

	4 Configuring AWS CodePipeline for container deployment on EKS
	4.1 Overview
	4.2 Architecture of CICD pipeline
	4.3 Configuring AWS Elastic container registry
	4.4 Push and Pull Docker images to or from AWS ECR
	4.5 Configuring AWS CodePipeline
	4.5.1 Creating IAM policy and IAM role
	4.5.2 Creating AWS CodeCommit repository
	4.5.3 Creating AWS CodeBuild project
	4.5.4 Creating AWS CodePipeline
	4.5.4.1 Configuring AWS CodePipeline for Dev Stage
	4.5.4.2 Configuring notification
	4.5.4.3 Configuring AWS CodePipeline for UAT stage
	4.5.4.4 Configuring AWS CodePipeline for production stage

