

NewgenONE OmniDocs

Configuration and Deployment Guide for Azure

Version: 11.3

Newgen Software Technologies Ltd.
This document contains propriety information of NSTL. No part of this document may be reproduced, stored, copied, or

transmitted in any form or by any means of electronic, mechanical, photocopying, or otherwise, without the consent of

NSTL.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 2

Table of Contents
1 Preface ... 4

1.1 Revision history .. 4
1.2 Intended audience ... 4
1.3 Documentation feedback ... 4
1.4 Third-party product information .. 4

2 Configuration of Azure Kubernetes cluster ... 5
2.1 Create an Azure Kubernetes cluster .. 5
2.2 Configuration of Azure container registry .. 15
2.3 Configuration of ACR image scanning .. 20
2.4 Create storage account .. 22

2.4.1 Create a BLOB storage ..22
2.4.2 Create an Azure file share ...30

2.5 Configuration of Azure cache for Redis .. 32
2.6 Configuration of application gateway ingress controller ... 36

2.6.1 Creation of an application gateway ..36
2.6.2 Installation of an application gateway ingress controller ...44

2.6.2.1 Install Helm...44
2.6.2.2 ARM authentication using a service principle ..45
2.6.2.3 Add or update Kubeconfig file ..45
2.6.2.4 Install ingress controller using Helm ..46

2.7 Configuration of DNS zone ... 49
2.8 Run Kubectl from local machine .. 53
2.9 Monitor Kubernetes dashboard ... 54
2.10 Azure monitor for container insights ... 55

3 Deployment of OmniDocs containers on Azure Kubernetes service .. 56
3.1 Prerequisites .. 56
3.2 Deliverables .. 57

3.2.1 Docker images ...57
3.2.2 Configuration files ...58
3.2.3 YAML files ..58

3.3 Changes in product's YAML files .. 60
3.4 Changes in application gateway Ingress YAML files ... 65
3.5 Changes in configuration files .. 68

3.5.1 Prerequisites ...68
3.5.2 OmniDocsWeb changes ..68
3.5.3 Wrapper changes ..72
3.5.4 AlarmMailer changes ..72
3.5.5 LDAP changes ..73
3.5.6 SSO changes ..78
3.5.7 Scheduler changes ..79
3.5.8 ThumbnailManager changes ...80

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 3

3.5.9 TEM changes ...81
3.5.10 EasySearch changes ..81
3.5.11 WOPI changes ...83
3.5.12 OmniScanWeb changes ...86

3.6 Deployment of containers.. 89
3.7 Cabinet and data source creation .. 91

3.7.1 Getting started with OSA ..92
3.7.2 Register JTS server ..94
3.7.3 Connecting OSA to the JTS Server ...96
3.7.4 Creating a cabinet ...97
3.7.5 Associating a cabinet .. 100
3.7.6 Creating a data source ... 102
3.7.7 Registering a cabinet .. 112
3.7.8 Creating site and volume ... 113

3.8 EasySearch post-deployment changes ... 120
3.9 OmniScanWeb: registration of cabinet .. 121

4 Configuration of Azure DevOps release pipeline ... 124
4.1 Overview .. 124
4.2 CICD pipeline architecture ... 125
4.3 Configuration of Azure DevOps .. 126

4.3.1 Configuration of release pipeline ... 127
4.3.2 Configuration of Dev stage ... 136
4.3.3 Configuration of UAT stage .. 144
4.3.4 Configuration of production stage ... 146

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 4

1 Preface
This guide describes the deployment of OmniDocs deliverables like OmniDocs Docker containers

and its required configuration files on the Azure Kubernetes Service (AKS).

1.1 Revision history
Revision Date Description

July 2024 Initial publication

1.2 Intended audience
This guide is intended for System Administrators, developers, and any other users seeking

information about the deployment of OmniDocs containers on Azure Kubernetes Services. The

reader must be comfortable to understand the computer terminology.

1.3 Documentation feedback
To provide feedback or any improvement suggestions on technical documentation, you can write

an email to docs.feedback@newgensoft.com.

To help capture your feedback effectively, request you to share the following information in your

email.

• Document Name

• Version

• Chapter, Topic, or Section

• Feedback or Suggestions

1.4 Third-party product information
This guide contains third-party product information about configuring Microsoft Azure CICD Pipeline for

Container Deployment on AKS Azure Kubernetes Cluster. Newgen Software Technologies Ltd does not claim

any ownership on such third-party content. This information is shared in this guide only for convenience of

our users and could be an excerpt from the Azure documentation. For latest information on configuring the

Azure Kubernetes Cluster and Azure DevOps refer to the Azure documentation.

mailto:docs.feedback@newgensoft.com

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 5

2 Configuration of Azure Kubernetes cluster
This section contains the steps to configure the Kubernetes Cluster on Azure.

2.1 Create an Azure Kubernetes cluster
This section explains how to create an Azure Kubernetes Cluster:

Pre-requisites:

Following are the prerequisites for Azure Kubernetes Cluster creation:

• Signed in user must have below roles:

o At Subscription: Contributor Role

o At Subscription: User Access Administrator

• Virtual network and subnet must be created for the Kubernetes cluster.

Before creating the Azure Kubernetes Cluster also known as AKS, you must sign in to the Azure

portal at https://portal.azure.com.

Perform the below steps to create an Azure Kubernetes Cluster:

1. On the Azure portal menu or from the Home page, select Create a resource.

2. Select Containers and Kubernetes Service.

Figure 2.1

https://portal.azure.com/

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 6

3. In the Basics tab, specify the following details on the Create Kubernetes cluster:

• Subscription: Select a valid Azure subscription.

• Resource group: Select or create an Azure Resource group, such as AzureKubernetes.

• Kubernetes cluster name: Enter a Kubernetes cluster name such as BPMSuite-AKSCluster.

• Region: Select a region into which you want to create an AKS cluster.

• Availability zones: Usually there are three availability zones per region that allows you to

spread the nodes across different physical locations for high availability. Select the

availability zones as per your business requirement. [By default, select all the availability

zones].

• Kubernetes version: Select the default one that is, 1.20.9 (default).

• Primary node pool: Select a VM Node size for the AKS nodes and select the number of

nodes to be deployed into the AKS cluster.

NOTE:

The VM size can’t be changed after the AKS cluster deployment. However, node count is adjustable.

• Scale method: Select the scale method as Autoscale. Autoscaling helps to ensure that your

cluster is running efficiently with the right number of nodes for the workloads present.

• Click Next: Node Pools.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 7

Figure 2.2

4. On the Node pools page, keep the default options and click on the Next: Authentication>.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 8

Figure 2.3

5. On the Authentication page, keep the default options and click on the Next: Networking>.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 9

Figure 2.4

6. Select the Azure CNI as Network configuration and specify the following details:

• Virtual network: Select the created VNet for this AKS cluster deployment that is,

Vnet_for_AzureKubernetes.

• Cluster subnet: Select the subnet into which both the nodes and containers in the cluster

gets placed that is, subnet_dev (10.0.2.0/23).

NOTE:

This IP range 10.0.2.0/23 must be large enough to accommodate the nodes, pods, and all the Kubernetes resources that

might be provisioned in your cluster.

• Kubernetes service address range: Specify the IP range from which you can assign Ips to the

internal Kubernetes services. This range must not be connected to this virtual network, or it

must not overlap with any Subnet IP ranges. For example: 10.0.0.0/25.

• You can reuse this range across different AKS clusters.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 10

• Kubernetes DNS service IP address: An IP address assigned to the Kubernetes DNS service.

It must be within the Kubernetes service address range. For example: 10.0.0.10.

NOTE:

Don’t use the first IP address in your address range. The first address is used for the

10ubernetes.default.svc.cluster.local address.

• Docker Bridge address: Docker bridge is not used by AKS clusters or the pods themselves,

you must set this address to continue to support scenarios such as docker build within the

AKS cluster. It is required to select a CIDR for the Docker bridge network address. Else,

Docker picks a subnet automatically, which can conflict with other CIDRs. You must pick an

address space that does not collide with the rest of the CIDRs on your networks, including

the cluster's service CIDR and pod CIDR that is, 172.17.0.1/25.

• You can reuse this range across different AKS clusters.

• Select Azure as Network policy and keep the other settings as default.

• Click Next: Integrations>.

Figure 2.5

7. On the Integration page, keep the default options and click the Next: Tags>.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 11

Figure 2.6

8. On the Tags page, keep the default options and click Next: Review + create>.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 12

Figure 2.7

9. On the Review + create page, click Create once validation is passed.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 13

Figure 2.8

10. Once deployment is complete, click Go to resource.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 14

Figure 2.9

The Azure Kubernetes Cluster dashboard appears:

Figure 2.10

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 15

2.2 Configuration of Azure container registry
Perform the below steps to configure Azure Container Registry:

1. Sign in to the Azure Portal using the below URL:

https://portal.azure.com/

Figure 2.11

2. After a successful sign in, select Create a resource.

3. Select Containers and then select Container Registry.

https://portal.azure.com/

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 16

Figure 2.12

4. In the Basic tab, specify the following details:

• Resource group: Select the existing resource group or create a new resource group that is,

AzureKubernetes.

• Registry name: Specify the user-defined name that is, newgencontainerregistry.

• Location: Select the location that is, UAE North, and so on.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 17

• SKU: Select the SKU based on your usage as Basic, Standard, or Premium. Each SKU carry a

different storage size.

For example,

SKU Storage Limit

Basic 10 GiB

Standard 100 GiB

Premium 500 GiB or more

Figure 2.13

5. Accept default values for the remaining settings. Then select Review + create. After reviewing

the settings, select Create.

6. When the Deployment succeeded message appears, select the container registry in the portal.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 18

Figure 2.14

7. Click Access keys from Settings and enable Admin user.

Figure 2.15

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 19

NOTE:

Kindly keep the Login server, Username, and password (or password2) as these values are required in the following

steps to push or pull Docker images.

8. Use the below command to connect to the created container registry from your local machine

(Where Docker Engine is already installed):

docker login <Container Registry Login server> -u <Container Registry username> -p

<Container Registry password>

For example,

Figure 2.16

9. After a successful sign in to the Container Registry, use the below command to tag and push the

Docker images from your local machine to ACR (Azure Container Registry):
docker tag <image name>:<image tag> <container registry server>/<image

name>:<image tag>

docker push <container registry server>/<image name>:<image tag>

For Example,
docker tag ibps5serviceinstanceweb:sp2

newgencontainerregistry.azurecr.io/ibps5serviceinstanceweb:sp2

docker push newgencontainerregistry.azurecr.io/ibps5serviceinstanceweb:sp2

Where newgencontainerregistry.azurecr.io is the Container Registry Login server name.

NOTE:

Pushing any local Docker images to a repository is mandatory to tag that image 1st. You can also configure these

commands in Jenkins to execute them automatically.

10. Use the below command to pull the Docker images from ACR to your local machine:
docker pull <container registry server>/<image name>:<image tag>

For Example,
docker pull

newgencontainerregistry.azurecr.io/ibps5serviceinstanceweb:latest

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 20

2.3 Configuration of ACR image scanning
Perform the below steps to configure ACR Image Scanning:

1. Microsoft Defender for Cloud perform the ACR image scanning. Once the image scanning is

configured and whenever a Docker image is pushed to the Azure Container Repository,

Microsoft Defender for Cloud automatically scans that Docker image. Hence, it is mandatory to

push that image in ACR to trigger the scan of an image.

NOTE:

Ensure that the Defender plan is enabled for the Container registries.

2. Go to the Microsoft Defender for Cloud page.

3. Click Environment settings under Management.

4. Click listed subscription.

Figure 2.17

5. Enable the Container registries defender plan if it is not already enabled.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 21

Figure 2.18

Microsoft Defender for container registries includes a vulnerability scanner to scan the images

in your Azure Resource Manager-based Azure Container Registry registries.

6. Provide deeper visibility into your images vulnerabilities. The integrated scanner is powered by

Qualys, the industry-leading vulnerability scanning vendor.

When issues are found – by Qualys or Defender for Cloud – you get notified in the workload

protection dashboard.

For example,

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 22

Figure 2.19

2.4 Create storage account
Perform the below to configure a storage account:

2.4.1 Create a BLOB storage
Perform the below steps to create IAM Policy and Role:

1. Sign in to the Azure Portal using the below URL:

https://portal.azure.com/

2. Select All services on the Azure portal menu.

3. Select Storage Accounts.

4. Click Create on the Storage Accounts.

5. On the Basics tab, select an active Azure subscription.

6. Under the Resource group field, select your desired resource group, or create a new resource

group like AzureKubernetes.

7. Enter a name for your storage account like bpmsuitestoage.

8. Select a location or region in which you want to create your storage account that is, UAE North.

9. Select a performance tier. The default tier is Standard.

10. Specify how you want the storage account to replicate. The default replication option is Geo-

redundant storage (GRS).

https://portal.azure.com/

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 23

11. Keep the other settings as default and click Next: Advanced>.

Figure 2.20

12. On the Advanced tab, keep the default options and click Next: Networking>.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 24

Figure 2.21

13. On the Networking tab, keep the default options and click Next: Data protection>.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 25

Figure 2.22

14. On the Data protection tab, keep the default options and click Next: Tags>.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 26

Figure 2.23

15. On the Tags tab, keep the default options and click Next: Review + create.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 27

Figure 2.24

16. On the Review + create tab, click Create once validation is passed.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 28

Figure 2.25

17. Once deployment is complete, click Go to resource.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 29

Figure 2.26

18. Click Access keys from Settings under Security + Networking.

NOTE:

Keep the Storage account name and key1 (or key2) as these values are required in the following steps for the

Kubernetes volume mounting.

19. Click Containers under the Data storage. The Containers screen appears.

20. Click +Container. The New Container dialog appears.

21. Specify the following details:

• Name: Specify the unique blob storage name.

• Public access level: Select default “Private (no anonymous access)”.

22. Click Create.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 30

Figure 2.27

2.4.2 Create an Azure file share
Perform the below steps to create an Azure File Share:

1. Click Overview of the created storage account.

2. Click File shares under the Data storage. The File shares dialog appears.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 31

Figure 2.28

3. Click +File share. The New File share dialog appears.

4. Specify the following details:

• Name: Specify the unique file share name.

• Tiers: Select the ‘Transaction optimized’ as tier.

• Click Create.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 32

Figure 2.29

2.5 Configuration of Azure cache for Redis

Azure Cache for Redis provides fully managed open-source Redis within Azure that can be used as a

distributed data or content cache. In addition, it can be used as a session store and so on along with

that it provides an in-memory data store.

Perform the below steps to configure the Azure Cache for Redis:

1. Sign in to the Azure Portal using the below URL:

https://portal.azure.com/

2. On the Azure portal menu or from the home page, select Create a resource.

3. Select Databases.

4. Select Azure Cache for Redis.

https://portal.azure.com/

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 33

Figure 2.30

5. Specify the following details under the Basics tab:

• Subscription: Select a valid Azure subscription.

• Resource group: select or create an Azure Resource group, such as AzureKubernetes.

• DNS name: Enter a Redis cache DNS name such as azrediscache.

• Location: Select a region into which you want to create an Azure Cache for Redis.

• Cache type: Select the Redis cache service tier as per your requirement. You can select from

250 MB to 1455 GB in-memory cache.

• Click Next: Networking>.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 34

Figure 2.31

6. On the Networking tab, select the connectivity method as ‘Public Endpoint’ and click Next:

Advanced>.

Figure 2.32

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 35

7. On the Advanced tab, enable the Non-TLS port, select the Redis version as 6 and click Next:

Tags>.

Figure 2.33

8. On the Tags tab, keep the default options and click Next: Review + create>.

9. On the Review + create tab, click Create once validation is passed.\

Figure 2.34

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 36

10. Once deployment is complete, click Go to resource.

Figure 2.35

2.6 Configuration of application gateway ingress

controller
This section explains how to configure Application Gateway Ingress Controller.

2.6.1 Creation of an application gateway
Pre-requisites:

• A subnet must be created in the same virtual network in which the Kubernetes cluster

exists.

Perform the below steps to create an Application Gateway:

1. On the Azure portal menu or from the Home page, select Create a resource.

2. Select Networking.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 37

Figure 2.36

3. Select Application Gateway. The Create application gateway screen appears.

4. Specify the following details under the Basics tab:

• Subscription: Select a valid Azure subscription.

• Resource group: Select or create an Azure Resource group, such as AzureKubernetes.

• Application gateway name: Enter a Kubernetes cluster name such as AppGateway-

AKSCluster.

• Region: Select a region into which you want to create an AKS cluster that is, UAE North

• Tier: Select Standard V2.

• Virtual network: Select the same virtual network in which the Kubernetes cluster exists.

• Subnet: Select the created subnet for the application gateway.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 38

• Keep the other settings as default and then select the Next: Frontends.

Figure 2.37

5. Set the Frontend IP address type as Public.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 39

6. Select Add new for the Public IP address and enter a user-defined name that is, appgwpublicip

and then click OK.

Figure 2.38

7. Select Next: Backends. The Backends tab appears.

8. Select add a backend pool. The Add a backend pool dialog appears.

9. Enter the following details to create an empty backend pool:

• Name: Enter a user-defined name that is, appgwbackendpool.

• Add backend pool without targets: Select Yes to create a backend pool with no targets.

• Select Add to save the backend pool configuration and return to the Backends tab.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 40

Figure 2.39

10. On the Backends tab, select Next: Configuration. The Configuration tab appears.

11. Select Add a routing rule in the Routing rules column. The Add a routing rule dialog appears.

12. Enter the user-defined rule name that is, routingrule1.

13. A routing rule requires a listener. On the Listener tab, enter the following details:

• Listener name: Enter a user-defined listener name that is, appgwlistener.

• Frontend IP: Select Public to select the public IP that you have created in the Frontends tab.

• Keep the other settings as default and switch to the Backend targets tab.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 41

Figure 2.40

14. In the Backend targets tab, select the backend pool created in the Backends tab for the

Backend target.

15. For the HTTP settings, select Add new to add a new HTTP setting.

Figure 2.41

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 42

16. In the Add an HTTP setting, enter the user-defined HTTP setting name that is,

appgwhttpsetting.

17. Keep the other settings as default and then click Add to return to the Add a routing rule.

Figure 2.42

18. Select Add to save the routing rule in the Add a Routing and return to the Configuration tab.

19. Select Next: Tags and then click Next: Review + create.

20. Once validation is passed, select Create.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 43

Figure 2.43

21. Once the deployment is complete, click Go to resource.

Figure 2.44

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 44

2.6.2 Installation of an application gateway ingress controller
An ingress controller is a piece of software that provides reverse proxy, configurable traffic routing,

and TLS termination for Kubernetes services. Kubernetes ingress resources are used to configure

the ingress rules and routes for individual Kubernetes services. Using an ingress controller and

ingress rules, a single IP address can be used to route traffic to multiple services in a Kubernetes

cluster.

Pre-requisites:

• Azure Kubernetes Service must be created.

• Application Gateway must be created.

To install an Application Gateway Ingress Controller (AGIC), follow the below steps:

• Install Helm

• Azure Resource Manager Authentication using a Service Principle

• Install Ingress Controller using Helm

2.6.2.1 Install Helm

1. If you use the Azure Cloud Shell https://portal.azure.com/#cloudshell/ then the Helm CLI is

already installed. To install Helm on other platforms please refer to

https://helm.sh/docs/intro/install/.

2. Open the Azure Cloud Shell and run the following command to add the application-gateway-

kubernetes-ingress helm package.

helm repo add application-gateway-kubernetes-ingress

https://appgwingress.blob.core.windows.net/ingress-azure-helm-package/

helm repo update

Figure 2.45

https://portal.azure.com/#cloudshell/
https://helm.sh/docs/intro/install/

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 45

2.6.2.2 ARM authentication using a service principle

Perform the below steps for ARM Authentication using a service principle:

1. Application Gateway Ingress Controller (AGIC) communicates with the Kubernetes API Server

and Azure Resource Manager. It requires authentication to access these APIs

2. Open the Azure Cloud Shell https://portal.azure.com/#cloudshell/ and run the following

command to create a service principle and encode with base64. The base64 encoding is

required for the JSON blob to be saved to Kubernetes.
az ad sp create-for-rbac --role Contributor --sdk-auth --scopes

/subscriptions/<Subscription-id>/resourceGroups/<Resource group> | base64 -

w0

Where,

Subscription-id – Enter your account subscription id

Resource group – Ente the name of resource group associated with kubernetes cluster

For Example –
az ad sp create-for-rbac --role Contributor --sdk-auth --scopes

/subscriptions/323527f6b-535a1-406d-239b-0972646c8500c3/resourceGroups/

AzureKubernetes | base64 -w0

NOTE:

Keep the base64 encoded JSON blob as these values are required in the following steps for installing AGIC.

2.6.2.3 Add or update Kubeconfig file
Perform the below steps to add or update kubeconfig file:

1. Open the Azure Cloud Shell https://portal.azure.com/#cloudshell/ .

2. Delete the .kube/config file (if already exists) using below command:
rm .kube/config

3. Now execute the below command to re-create .kube/config file:
az aks get-credentials --resource-group <ResourceGroupName> --name

<AzureEKSClusterName>

For example,
az aks get-credentials --resource-group AzureKubernetes --name BPMSuite-

AKSCluster

https://portal.azure.com/#cloudshell/
https://portal.azure.com/#cloudshell/

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 46

2.6.2.4 Install ingress controller using Helm
Perform the below steps to install ingress controller using Helm:

1. Open the Azure Cloud Shell https://portal.azure.com/#cloudshell/ and run the following

command to download the helm-config.yaml file which configures the Application Gateway

Ingress Controller.
wget https://raw.githubusercontent.com/Azure/application-gateway-kubernetes-

ingress/master/docs/examples/sample-helm-config.yaml -O helm-config.yaml

2. Edit the helm-config.yaml file and fill in the values for appgw (Application Gateway) and

armAuth (ARM Authentication using Service Principle).
nano helm-config.yaml

3. Update the <subscriptionId>, <resourceGroupName>, and <applicationGatewayName> for

appgw.

For example,

Figure 2.46

4. Comment the armAuth using AAD-Pod-Identity and uncomment the armAuth using Service

Principle.

5. Update the base64 encoded JSON blob created in the previous step ‘ARM Authentication using

a Service Principle’ for secretJSON.

For example,

https://portal.azure.com/#cloudshell/

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 47

Figure 2.47

6. Specify the rbac enabled as true if the cluster is RBAC enabled.

For example,

Figure 2.48

7. Install Helm chart application-gateway-kubernetes-ingress with the helm-config.yaml

configuration from the previous step.
helm install ingress-azure \

 -f helm-config.yaml \

 application-gateway-kubernetes-ingress/ingress-azure \

 --version 1.4.0

For example,

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 48

Figure 2.49

NOTE:

Use the latest version of ingress-azure. You can get the release information from the below link:

https://github.com/Azure/application-gateway-kubernetes-ingress/releases

8. Application Gateway Ingress Controller runs as a pod in the Kubernetes cluster. You can check

the running status of the AGIC pod using the below command:
Kubectl get po | grep ingress

For example,

Figure 2.50

https://github.com/Azure/application-gateway-kubernetes-ingress/releases

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 49

2.7 Configuration of DNS zone
Ingress Controller creates a Load Balancer and routes the incoming requests to the target

Kubernetes services according to the host-based routing rules. Host-based routing is a capability of

Ingress Controller that redirects the user requests to the right service based on the request-host

header.

For example, you can set the rules as below:

• IF URL is ‘ibps5serviceinstance.azure.co.in’ then redirect to iBPS ServiceInstance Web

container.

• IF URL is ‘ibps5userinstance.azure.co.in’ then redirect to the iBPS UserInstance Web

container.

To support the host-based routing, you must register a custom domain and create a new RecordSet

in DNS Zone for each host-path.

Perform the below steps to create a DNS Zone:

1. Sign in to the Azure Portal using https://portal.azure.com.

2. After a successful sign in, click Create a resource and search for the DNS Zone.

Figure 2.51

3. Click Create.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 50

Figure 2.52

4. On the Create DNS zone, specify the following details under the Basics tab:

a. Subscription: Select a valid Azure subscription.

b. Resource group: Select or create an Azure Resource group, such as AzureKubernetes.

c. Name: Specify a valid DNS Zone name such as azure.co.in.

d. Click Next: Tags>.

Figure 2.53

5. On the Tags tab, keep the default options and click Next: Review + create>.

6. On the Review + create tab, click Create once validation is passed.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 51

Figure 2.54

7. Once deployment is complete, click Go to resource. The Created DNS Zone’s Overview screen

appears.

Figure 2.55

8. On the top of the DNS Zone tab, select + Record set.

9. On the Add record set tab, type or select the following values:

a. Name: Enter the user-defined name.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 52

b. Type: Select type as “A – IPv4-address”

c. Alias record set: Select alias as Yes.

d. Alias type: Select the alias type as Azure resource.

e. Choose a subscription: Select a valid Azure subscription.

f. Azure resource: Select the Public IP Address created for the Application Gateway that is,

appgwublicip.

g. TTL (Time To Live): Time-to-live of the DNS request specifies how long DNS servers and

clients can cache a response.

NOTE:

There is no change in the default value.

h. Click OK to save the record set.

Figure 2.56

10. Similarly, you can add other record sets for each host-path defined in AppGateway-

IngressController.yaml file.

For example,

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 53

Figure 2.57

2.8 Run Kubectl from local machine
Before running the kubectl commands from your local machine, you must have the following pre-

requisites:

• kubectl: https://kubernetes.io/docs/tasks/tools/install-kubectl/

• azure-cli: https://docs.microsoft.com/en-us/cli/azure/install-azure-cli-windows?tabs=azure-

cli

• Delete the .kube folder from C:\Users\<Logged-in UserName> folder if exists.

• Now execute the below command to worker node:
az aks get-credentials --resource-group <ResourceGroupName> --name

<AzureEKSClusterName>

For example,
az aks get-credentials --resource-group AzureKubernetes --name

BPMSuite-AKSCluster

• Once you have run the above command to connect to the AKS cluster, you can run any

kubectl commands. Here are a few examples of useful commands you can try.

For example,

List all the pods

 kubectl get pods

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 54

 # List all deployments in all namespaces

 kubectl get deployments --all-namespaces=true

 # List all deployments in a specific namespace

 # Format :kubectl get deployments --namespace <namespace-name>

 kubectl get deployments --namespace kube-system

2.9 Monitor Kubernetes dashboard
• The Azure portal includes a Kubernetes resource view for easy access to the Kubernetes

resources in your Azure Kubernetes Service (AKS) cluster.

• To see the Kubernetes resources, navigate to your AKS cluster in the Azure portal. The

navigation pane on the left is used to access your resources. The resources include:

o Namespaces: Displays the namespaces of your cluster. The filter at the top of the

namespace list provides a quick way to filter and display your namespace resources.

o Workloads: Displays information about deployments, pods, replica sets, stateful sets,

daemon sets, jobs, and cron jobs deployed to your cluster.

o Services and ingresses: Display all of your cluster's service and ingress resources.

o Storage: Displays your Azure storage classes and persistent volume information.

o Configuration: Displays your cluster's config maps and secrets.

Figure 2.58

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 55

2.10 Azure monitor for container insights
Azure Monitor for containers is a feature designed to monitor the health and performance of

container workloads deployed to Azure Kubernetes service. It delivers a comprehensive monitoring

experience and gives us performance visibility by collecting memory and processor metrics from

controllers, nodes, and containers that are available in Kubernetes through the Metrics API.

By default, Azure Monitor is enabled for container monitoring during Azure Kubernetes service

creation (Under Integrations tab).

For example,

Figure 2.59

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 56

Perform the below steps to view the container insights:

1. Sign in to the Azure portal at https://portal.azure.com.

2. On the Azure portal menu or from the Home page, select All resources.

3. Click on the created Kubernetes service.

4. Click Monitoring >> Insights. Here are the series of tabs to monitor your AKS Cluster, Nodes,

Containers, Controllers, and so on.

Figure 2.60

3 Deployment of OmniDocs containers on Azure

Kubernetes service
This section describes the deployment of OmniDocs containers. Refer the below sections for

procedural details.

3.1 Prerequisites
Azure Kubernetes Service must be configured, and its Worker nodes must be in Ready state.

NOTE:

Refer to the Configuration of Azure Kubernetes Cluster for the configuration of Azure Elastic Kubernetes Service.

https://portal.azure.com/

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 57

3.2 Deliverables
Newgen has isolated the product suite into multiple Docker containers to enable the independent

scalability of each Docker container. This separation is done based on the product's usability. At a

broad level, Web components and EJB components are isolated for deployment in separate

container instances. Web components is deployed on the underlying web server JBoss WebServer

6.0.x. EJB components is deployed on the underlying application server JBoss EAP 7.4.x. Newgen

has released multiple Docker images for the different product suites along with some configuration

files for data persistence, YAML files for deployment, and some documentation for end-to-end

configurations and deployments.

The followings are the list of deliverables:

The Newgen delivers the following:

• Docker Images

• Configuration Files

• YAML Files

3.2.1 Docker images
The following Docker images are delivered for the initial product deployment:

• OmniDocs Web Components

• OmniDocs Web Service Components

• OmniDocs EJB Components

• OmniDocs Add-on Services (Wrapper, AlarmMailer, Scheduler, ThumbnailManager and

LDAP)

• EasySearch (Apache Manifold only)

• Text Extraction Manager or Full-Text Search (TEM/FTS)

• OmniScan Web Components

• OmniDocs WOPI

NOTE:

These Docker images can be delivered to a private Docker repository like ACR (Azure Container Registry) or in the form

of compressed files that can be shared over the FTP or similar kind of media.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 58

3.2.2 Configuration files
Configuration files are dynamic in nature and data is written at runtime. Database details in

configuration files such as Server.xml and standalone.xml are written at runtime. These types of

files must be kept outside the container to persist the data. Here, Azure FileShare is used to persist

configuration files.

The following configuration files are shared for OmniDocs Docker images:

• OmniDocsWeb

• OmniDocsEJB

• ODServices

• EasySearch

• TEM

• OmniScanWeb7.0

• OmniDocsWOPI

3.2.3 YAML files
YAML files stands for “YAML Ain’t Markup Language”. It is a human-readable object configuration

file that is used to deploy and manage the objects on the Kubernetes cluster. In other words, it is a

manifest file that contains the deployment descriptor of Kubernetes containers. You can execute

YAML files using “kubectl apply –f <YAMLFile>” or use these files in Azure DevOps Release Pipeline

to deploy the containers.

The following configuration files has shared for OmniDocs Docker images:

• OmniDocsWeb.yml

• OmniDocsWeb_Services.yml

• OmniDocsEJB.yml

• OmniDocsServices.yml

• EasySearch_ApacheOnly.yml

• TEM.yml

• OmniScanWeb7.0.yml

• OmniDocswopi.yml

• AzureFile_PV_PVC.yml

• AppGateway-IngressController.yml

Here’s an example of a YAML file:

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 59

Figure 3.1

AzureFile_PV_PVC.yml file is used for Persistent Volume and Persistent Volume Claim.

Persistent Volume (PV) is a storage piece in the cluster that is provisioned using Storage Classes. It

contains the Azure FileShare secretName and shareName that is already created during Azure

FileShare creation. It is also used to set the access permission on Azure FileShare using

mountOptions attribute.

A PersistentVolumeClaim (PVC) is a request for storage by a user. It is similar to a Pod.

Pods consume node resources and PVCs consume PV resources. Pods can request specific levels of

resources (CPU and Memory). Claims can request specific size and access modes (for example, they

can be mounted ReadWriteOnce, ReadOnlyMany or ReadWriteMany).

AppGateway-IngressController.yml is used for the ingress controller. An ingress controller is an

object running inside the Kubernetes cluster that is used to manage the host-based routing rules.

For example, you can set the host-based routing rules like if the URL is

omnidocs.newgendocker.com then the ingress controller redirects the user request to OmniDocs

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 60

WEB containers. and if the URL is omniscan.newgendocker.com then it redirects the user request to

the OmniScan WEB containers.

NOTE:

You can store the above YAML files in Azure Repo that is used by Azure DevOps Release Pipeline.

3.3 Changes in product's YAML files
The changes in the Product’s YAML Files are as follows:

• Namespace: In the YAML files, default namespace is given as dev. You can change this

name as per your requirement.

Figure 3.2

• Name: In the OmniDocsWeb.yml file, od110web is given as the default name of

Kubernetes objects - deployment, replicas, container, and service. You can change this

name as per your requirement. While changing the name, ensure that this name is not

more than 13 letters in length and must contain small letters only.

For example,

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 61

Figure 3.3

• Replica: In the OmniDocsWeb.yml file, the default replica is given as 1. That means only one

container is created after the deployment. You can increase this number as per our choice.

• Image: In the OmniDocsWeb.yml file, update the image location. By default, the below value

is given:

Here:

➢ newgencontainerregistry.azurecr.io - It’s the name of the Azure Container Registry.

➢ omnidocsweb – It’s the OmniDocsWeb Docker image name.

• #{RELEASE.ARTIFACTS._OMNIDOCSWEB.BUILDID}#: It’s a Docker image’s tag name in the form

of a dynamic variable whose value gets updated at runtime using AzureDevOps Release

Pipeline. Specify the static tag name like latest, build-number1, and so on.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 62

• SecurityContext: In the OmniDocsWeb.yml file, SecurityContext [runAsNonRoot: true] is

defined. It means the OmniDocsWeb container can never be run with root privileges. If any

container tries to run with the root user, then Kubernetes stops its deployments.

Figure 3.4

• Resource Request and limit: In the OmniDocsWeb.yml file, resource request and resource

limit parameters are defined. The request parameter specifies the minimum required

resources to run the particular container and the limit parameter specifies the maximum

resource limit that a container can use. In other words, a running container is not allowed to

use more than the resource limit you set.

For Example,

Figure 3.5

Here, 1000m CPU = 1 Core CPU

The above-specified limit is the minimum required resource to run a container. If users are

increasing, then you must increase the limit range accordingly.

• VolumeMounts and Volume: Volume mounts and volumes are used to persist the data

outside the container so that whenever the container terminates due to any reason our data

is always persisted. In the OmniDocsWeb.yml file, we have persisted configuration files or

folders and log files.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 63

Figure 3.6

In volumeMounts, mountPath is a path inside the container that is mounted. Here,

mountPath cannot be changed as this structure is predefined in a Docker container. subPath

works as a relative path that is appended to the attached persistent volume’s shareName.

subPathExpr is used to segregate the product logs container wise. In addition, the name is a

user-defined name that must be matched with the name specified in volumes.

Figure 3.7

In volumes, azurefile-pvc is the persistent volume claim name.

• Ports: In the OmniDocsWeb.yml file, containerPort is specified as 8080. That means only

port 8080 is exposed outside the container and no other port is accessible from outside.

Figure 3.8

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 64

• ReadinessProbe: The kubelet uses the readiness probe to know when a container is ready to

start accepting traffic. Until unless the readiness probe is not succeeded, the container does

not serve the user requests.

Figure 3.9

Here, until unless ip:port/omnidocs/web is not accessible through a browser, the container

does not accept the user request.

• LivenessProbe: Docker containers have healing power, if an application running inside the

container gets down due to any reason or becomes unresponsive then Kubernetes restarts

the application automatically inside the container. This feature is known as LivenessProbe in

Kubernetes.

For Example,

Figure 3.10

• Environment variable: In the OmniDocsWeb.yml file, the JAVA_OPTS parameter is defined

that is used to set the heap size in the WEB container dynamically.

Figure 3.11

Ensure ‘-XX:MaxRAMPercentage’ is a parameter through which you can provide the available

memory to use as a max heap size to JVM. In the above example, 75% of total memory is

allocated as heap size.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 65

• ImagePullSecret: ImagePullSecret is a secret value that is used to pull an image from a

private container repository like Azure Container Registry.

For example,

Figure 3.12

Execute the below command to create an ImagePullSecret:
kubectl create secret docker-registry azurepullsecret --docker-server

newgencontainerregistry.azurecr.io --docker-username= newgencontainerregistry
--docker-password kmPF/ytffu5q6NazqvVYtJ???????

You can also create ImagePullSecret from Azure DevOps Release Pipeline.

NOTE:

You can use the above guidelines to update other YAML Files that are as follows:

• OmniDocsWeb_Services.yml

• OmniDocsEJB.yml

• OmniDocsServices.yml

• EasySearch_ApacheOnly.yml

• TEM.yml

• OmniScanWeb7.0.yml
• OmniDocswopi.yml

3.4 Changes in application gateway Ingress YAML files
Along with the product’s YAML file, AppGateway Ingress Controller’s YAML file AppGateway-

IngressController.yaml is also shared. Using an ingress controller and ingress rules, a single IP

address can be used to route traffic to multiple services in a Kubernetes cluster. The AppGateway

Ingress Controller creates a Load Balancer with its external IP and routes the incoming requests to

the target Kubernetes services according to the host-based routing rules. Host-based routing is a

capability of Ingress Controller that redirects the user requests to the right service based on the

request-host header.

For example, you can set the rules as below:

• If URL is omnidocs.newgendocker.com, then redirect to the OmniDocsWeb container.

• If URL is omniscan.newgendocker.com, then redirect to the OmniScanWeb container.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 66

NOTE:

To support the host-based routing, register a domain and create a new RecordSet in DNS Zone for each host-path. Refer

to the document Configuration of Azure Kubernetes Cluster to see the configuration of Application Gateway Ingress

Controller and DNS Zone.

• Once Application Gateway Ingress is configured and RecordSets are created in DNS Zone,

then must deploy the Ingress controller along with its ruleset using the YAML file.

Figure 3.13

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 67

• In AppGateway-IngressController.yml file, there are multiple host-based rules defined.

➢ omnidocs.newgendocker.com [Specified as a record set in Route-53]

If the host URL is omnidocs.newgendocker.com, then it redirects the user request to the

od110web container’s service which is running on port 8080. Here, od110web is the

name of the OmniDocsWeb container.

➢ omnidocswebservices.newgendocker.com [Specified as a record set in Route-53]

If the host URL is omnidocswebservices.newgendocker.com, then it redirects the user

request to the od110websvc container’s service which is running on port 8080. Here,

od110websvc is the name of the OmniDocs Web Service container.

➢ omnidocsconsole.newgendocker.com [Specified as a record set in Route-53]

If the host URL is omnidocsconsole.newgendocker.com, then it redirects the user request

to the od110ejb container’s service which is running on port 9990. Here, od110ejb is the

name of the OmniDocsEJB container.

➢ apachemanifold.newgendocker.com [Specified as a record set in Route-53]

If the host URL is apachemanifold.newgendocker.com then it redirects the user request

to the easysearch11 container’s service which is running on port 8345. Here,

easysearch11 is the name of the EasySearch container.

➢ omniscan.newgendocker.com [Specified as a record set in Route-53]

If the host URL is omniscan.newgendocker.com, then it redirects the user request to the

omniscan web container’s service which is running on port 8080. Here, omniscanweb is

the name of the OmniScan Web container.

• In this YAML file, change the host URL, ServiceName, ServicePort, and the name name:

appgw-ingress as required.

• In this YAML file, there is defined SSL or TLS configuration through specifying the tls spec

along with hosts and secretName.

Figure 3.14

• You can specify the valid DNS against hosts that is, newgendocker.com.

• Before deploying the ingress controller, create a Kubernetes secret to host the certificate

and private key. Execute the below command to create a Kubernetes secret:

kubectl create secret tls <secret-name> --key <path-to-key> --cert <path-

to-crt> -n <Namespace>

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 68

For example,
kubectl create secret tls appgw-cert --key azure.key --cert azure.crt -n

dev

• After making the required changes as required, deploy the Ingress controller by executing

this YAML file using below command or can configure it to AzureDevOps Release Pipeline.
kubectl apply –f AppGateway-IngressController.yml

NOTE:

To execute the above command, kubectl must be configured on your local server. Refer to the Configuration of Azure

Kubernetes Cluster to run kubectl from your local machine.

3.5 Changes in configuration files
This section describes the changes in configuration files.

3.5.1 Prerequisites
The Prerequisites are as follows:

• All the configuration files and folders must be uploaded to the Azure FileShare defined in

the YAML file AzureFile_PV_PVC.yml. You can upload the configuration files and folder using

Azure Storage Explorer.

• The Redis Cache server is already configured.

• A valid wildcard certificate and the domain are already configured.

• SSL or TLS must be configured at the Ingress Controller or Load balancer level.

NOTE:

By default, all Docker containers are running with HTTPS protocol only. If you want to run with HTTP protocol, then

some additional settings must be required. For more details, refer to the Docker Troubleshooting Guide.

3.5.2 OmniDocsWeb changes
The changes in OmniDocsWeb are as follows:

• Update the OmniDocsEJB container name [Defined in OmniDocsEJB.yml file] in

NGOClientData.xml file in between the <endPointURL></endPointURL> tags located inside the

OmniDocsWeb\Newgen\NGConfig\ngdbini folder at the mapped location on the Worker node.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 69

Figure 3.15

Here, od110ejb is the name of the OmniDocsEJB container.

• Update the OmniDocsEJB container name [Defined in OmniDocsEJB.yml file] in IS.ini file in

between the <endPointURL ></endPointURL > tags located inside the

OmniDocsWeb\Newgen\NGConfig folder at the mapped location on the Worker node.

For example,

Figure 3.16

• Update the OmniDocsEJB container name [Defined in OmniDocsEJB.yml file] in jboss-ejb-

client.properties file located inside the OmniDocsWeb folder kept inside the Azure Fileshare.

For example,

Figure 3.17

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 70

Here, od110ejb is the name of the OmniDocsEJB container.

• Update the Azure Redis cache’s configuration endpoint in redisson.yaml file against the

singleServerConfig or clusterServersConfig. If redis cache is SSL enabled then use

rediss://<endpoint url>:port and if SSL is not enabled then use redis://<endpoint url>:port.

This file redisson.yaml is located inside the OmniDocsWeb folder kept inside the Azure

Fileshare.

Figure 3.18

• Open the web.xml file in edit mode located inside the OmniDocsWeb folder kept inside the

Azure Fileshare.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 71

• Search for filter httpHeaderSecurity and update the <param-value></param-value> tag’s

value with OmniDocs URL without context name against <param-name>

antiClickJackingUri</param-name>.

Figure 3.19

• Search for filter-class <filter-class>org.apache.catalina.filters.CorsFilter</filter-class> and

update the <param-value></param-value> tag’s value with OmniDocs URL with protocol

against <param-name> antiClickJackingUri</param-name>.

Figure 3.20

• Open the web_svc.xml file in edit mode located inside the OmniDocsWeb folder at the

mapped location on the Worker node.

• Search for filter-class "<filter-class>org.apache.catalina.filters.CorsFilter</filter-class>" and

update the <param-value></param-value> tag’s value with OmniDocs URL with protocol

against <param-name> antiClickJackingUri</param-name>.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 72

Figure 3.21

3.5.3 Wrapper changes
• Update the OmniDocsEJB container name [Defined in OmniDocsEJB.yml file] in

NGOClientData.xml in between the <endPointURL></endPointURL> tags file located inside

the ODServices/Wrapper/ngdbini folder kept inside the Azure Fileshare.

Figure 3.22

Here, od110ejb is the name of the OmniDocsEJB container.

3.5.4 AlarmMailer changes
Prerequisite:

The cabinet is created and associated with the running containers. If the cabinet is not created,

then refer to Cabinet and Data Source Creation section.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 73

Make the changes in AlarmMailer that are as follows:

1. Update the OmniDocsEJB container name [Defined in OmniDocsEJB.yml file] in IS.ini in between

the <endPointURL></endPointURL> tags file located inside the ODServices or AlarmMailer folder

kept inside the Azure Fileshare.

For example,

<endPointURL>http://od110ejb:8080/callbroker/execute/GenericCallBroker</endPointURL>

Here, od110ejb is the name of the OmniDocsEJB container.

2. Update the OmniDocsEJB container name [Defined in OmniDocsEJB.yml file] in

NGOClientData.xml in between the <endPointURL></endPointURL> tags file located inside the

ODServices/AlarmMailer/ngdbini folder kept inside the Azure Fileshare.

For example,

<endPointURL>http://od110ejb:8080/callbroker/execute/GenericCallBroker</endPointURL>

Here, od110ejb is the name of the OmniDocsEJB container.

3. Update the below settings in the Alarm.ini file located inside the ODServices/AlarmMailer folder

kept inside the Azure Fileshare.

i. Update the OmniDocs URL without context name in between the

<webservername></webservername> tag.

For example, <webservername>omnidocs.newgendocker.com</webservername>

Here, omnidocs.newgendocker.com is the host path defined in the AppGateway-

IngressController.yml file.

ii. Leave the WebServerPort as blank if OmniDocsWEB URL does not contain a port.

For example, <webserverport></webserverport>

iii. Update the OmniDocs cabinet name in between <cabinetname></cabinetname> tag.

For example, <cabinetname>ecmsuite</cabinetname>

Here, ecmsuite is the OmniDocs cabinet name gets created.

iv. Update the OmniDocs supervisor group’s user in between the <user></user> tag.

For example, <user>supervisor</user>

v. Update the OmniDocs supervisor group’s user password in between the

<password></password> tag. Ensure that this password must be in an encrypted

format.

For example, <password>:X-D;U:T-C;P-C;p5-C;b:d:</password>

3.5.5 LDAP changes
Prerequisite:

The cabinet is created and associated with the running containers. If the cabinet is not created,

then refer to the Cabinet and Data Source Creation section.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 74

The changes in LDAP are as follows: (For On_Prem Active Directory)

• Ensure that the LDAP Domain server is configured, and a private tunnel is created between the

Kubernetes worker nodes and the LDAP Domain server.

• Update the OmniDocsEJB container name [Defined in OmniDocsEJB.yml file] in

NGOClientData.xml in between the <endPointURL></endPointURL> tags file located inside the

ODServices/ODAuthMgr/ngdbini folder kept inside the Azure Fileshare.

For example,

<endPointURL>http://od110ejb:8080/callbroker/execute/GenericCallBroker</endPointURL>

Here, od110ejb is the name of the OmniDocsEJB container.

• Update the cabinet name and domain name in the ldap.ini and Hook.ini file located inside the

ODServices/ODAuthMgr folder at the mapped location.

Figure 3.23

Figure 3.24

Here, ecmsuite is the cabinet name and eco.com is the domain name.

• Update the same cabinet name and domain name in the ldap.ini and Hook.ini file located inside

the OmniDocsWeb\Newgen\NGConfig folder at the mapped location.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 75

• Update the ODServices container’s service name [Defined in respective YAML file] in ldap.ini

and Hook.ini file located inside the OmniDocsWeb\Newgen\NGConfig folder at the mapped

location.

Figure 3.25

Figure 3.26

Here, od110services is the service name of the ODServices container.

• Set <Display> as true for LDAP in AdminMenuOptions.xml located inside

OmniDocsWeb/Newgen/NGConfig/ngdbini/Custom/CABINETNAME folder at mapped location.

Figure 3.27

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 76

The changes in LDAP are as follows: (For Azure Active Directory)

• Update the OmniDocsEJB container name [Defined in OmniDocsEJB.yml file] in

NGOClientData.xml in between the <endPointURL></endPointURL> tags file located inside the

ODServices/ODAuthMgr/ngdbini folder kept inside the Azure Fileshare.

For example,

<endPointURL>http://od110ejb:8080/callbroker/execute/GenericCallBroker</endPointURL>

Here, od110ejb is the name of the OmniDocsEJB container.

• Update the cabinet name, domain name, and directory service as AzureAD in the Hook.ini file

located inside the ODServices/ODAuthMgr folder at the mapped location.

Figure 3.28

• Update the cabinet name and domain name in the ldap.ini file located inside the ODServices or

ODAuthMgr folder at the mapped location.

Figure 3.29

Here, ecmsuite is the cabinet name and eco.com is the domain name.

• Update the directory service as AzureAD in the DIS.xml file located inside the ODServices or

ODAuthMgr folder at the mapped location.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 77

Figure 3.30

• Update the same cabinet name and domain name in the ldap.ini and Hook.ini file located inside

the OmniDocsWeb\Newgen\NGConfig folder at the mapped location.

• Update the ODServices container’s service name [Defined in respective YAML file] in ldap.ini

and Hook.ini file located inside the OmniDocsWeb\Newgen\NGConfig folder at the mapped

location.

• Update the directory service as AzureAD in Hook.ini and config.ini located inside the

OmniDocsWeb\Newgen\NGConfig folder at the mapped location.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 78

Figure 3.31

Figure 3.32

Figure 3.33

Here, od110services is the service name of the ODServices container.

• Set <Display> as true for ldap in AdminMenuOptions.xml located inside

OmniDocsWeb/Newgen/NGConfig/ngdbini/Custom/CABINETNAME folder at mapped location.

For example,

Figure 3.34

3.5.6 SSO changes

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 79

Prerequisite:

The cabinet is created and associated with the running containers. If the cabinet is not created,

then refer to Cabinet and Data Source Creation section.

The changes in SSO are as follows:

• Update the <Host-Path URL of OmniDocsWeb container> at the place of

ibps5aurora.newgendocker.com in mapping.xml file located inside the

OmniDocsWeb/Newgen/NGConfig/ngdbini/SSOConFig folder.

• Update the CabinetName in mapping.xml file located inside the

OmniDocsWeb/Newgen/NGConfig/ngdbini/SSOConFig folder.

• Configure the CabinetName=DomainName in sso.ini file located inside the

OmniDocsWeb/Newgen/NGConfig/ngdbini/SSOConFig folder.

• ecmsuite=eco.com

3.5.7 Scheduler changes
Prerequisite:

The cabinet is created and associated with the running containers. If the cabinet is not created,

then refer to Cabinet and Data Source Creation section.

The changes in Scheduler are as follows:

• Update the OmniDocsEJB container name [Defined in OmniDocsEJB.yml file] in IS.ini in

between the <endPointURL></endPointURL> tags file located inside the ODServices or

Scheduler folder kept inside the Azure Fileshare.

For example,

<endPointURL>http://od110ejb:8080/callbroker/execute/GenericCallBroker</endPointURL>

Here, od110ejb is the name of the OmniDocsEJB container.

• Update the OmniDocsEJB container name [Defined in OmniDocsEJB.yml file] in

NGOClientData.xml in between the <endPointURL></endPointURL> tags file located inside

the ODServices/Scheduler/ngdbini folder kept inside the Azure Fileshare.

For example,

<endPointURL>http://od110ejb:8080/callbroker/execute/GenericCallBroker</endPointURL>

Here, od110ejb is the name of the OmniDocsEJB container.

• Update the ODServices container’s service name [Defined in respective YAML file] in

SchedulerConf.ini file located at ODServices or Scheduler folder at the mapped location.

For example: schedulerIpAddress=od110services

• Update the ODServices container’s service name [Defined in respective YAML file] in

eworkstyle.ini file located at

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 80

OmniDocsWeb/Newgen/NGConfig/ngdbini/Custom/<CABINETNAME> folder at mapped

location.

For example: schedularLocation=od110services

3.5.8 ThumbnailManager changes
Prerequisite:

The cabinet is created and associated with the running containers. If the cabinet is not created,

then refer to Cabinet and Data Source Creation section.

The changes in ThumbnailManager are as follows:

• Update the OmniDocsEJB container name [Defined in OmniDocsEJB.yml file] in IS.ini in

between the <endPointURL></endPointURL> tags file located inside the ODServices or

ThumbnailManager folder kept inside the Azure Fileshare.

For example,

<endPointURL>http://od110ejb:8080/callbroker/execute/GenericCallBroker</endPointURL>

Here, od110ejb is the name of the OmniDocsEJB container.

• Update the OmniDocsEJB container name [Defined in OmniDocsEJB.yml file] in

NGOClientData.xml in between the <endPointURL></endPointURL> tags file located inside

the ODServices/ThumbnailManager/ngdbini folder kept inside the Azure Fileshare.

For example,

<endPointURL>http://od110ejb:8080/callbroker/execute/GenericCallBroker</endPointURL>

Here, od110ejb is the name of the OmniDocsEJB container.

• Update the cabinet name, supervisor group’s user name, and password in

ThumnailConfig.xml located inside the ODServices or ThumbnailManager folder at the

mapped location on the Worker node.

Figure 3.35

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 81

3.5.9 TEM changes
Prerequisite:

The cabinet is created and associated with the running containers. If the cabinet is not created,

then refer to Cabinet and Data Source Creation section.

The changes in TEM are as follows:

• Update the OmniDocsEJB container name [Defined in OmniDocsEJB.yml file] in IS.ini and

NGOClientData.xml in between the <endPointURL></endPointURL> tags file located inside

the TEM folder kept inside the Azure Fileshare.

For example,

<endPointURL>http://od110ejb:8080/callbroker/execute/GenericCallBroker</endPointURL>

• Here, od110ejb is the name of the OmniDocsEJB container.

• Update the cabinet name in filename FTSServer-CABINETNAME-1.properties.

For example: FTSServer-ecmsuite-1.properties [ecmsuite is the cabinet name].

• Update the OmniDocsEJB container name [Defined in OmniDocsEJB.yml file] in FTSServer-

ecmsuite-1.properties renamed earlier.

• Update the OmniDocs supervisor group’s user name.

• Update the OmniDocs supervisor group’s user password. Ensure this password must be in an

encrypted format.

Figure 3.36

3.5.10 EasySearch changes
Prerequisite:

The cabinet is created and associated with the running containers. If the cabinet is not created,

then refer to Cabinet and Data Source Creation section.

The changes in EasySearch (Apache Manifold only) are as follows:

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 82

• Update the Database details in the ESconfig.ini file located inside the

EasySearch\ESConfigurator\conf folder kept inside the Azure Fileshare.

➢ ESClusterName=CABINETNAME_cluster

➢ OdDBIPAddress=DBIP

➢ OdDBPort=DBPORT

➢ OdCabinetName=CABINETNAME

➢ OdDBUserName=DBUSER

➢ OdDBPassword=DBPASSWORD in encrypted format

➢ OdDBType=sqlserver | oracle | postgres

Figure 3.37

• Update AppToBeConfigured=ApacheManifold in the ESconfig.ini file located inside the

EasySearch\ESConfigurator\conf folder kept inside the Azure Fileshare

• Update the cabinet name in the CrawlerConfig.xml file located inside the EasySearch\apache-

manifoldcf-2.25\example folder kept inside the Azure Fileshare.

• Update the OmniDocs supervisor group’s user name.

• Update the OmniDocs supervisor group’s user password. Ensure this password must be in an

encrypted format.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 83

Figure 3.38

• Update the OmniDocsEJB container name [Defined in OmniDocsEJB.yml file] in

NGOClientData.xml and RMClientData.xml in between the <endPointURL></endPointURL>

tags file located inside the EasySearch/apache-manifoldcf-

2.25/example/Newgen/NGConfig/ngdbini folder kept inside the Azure Fileshare.

• Update the EnableEasySearch=Y in the eworkstyle.ini file located inside the

OmniDocsWeb\Newgen\NGConfig\ngdbini\Custom\CABINET_NAME folder kept inside the

Azure Fileshare.

Figure 3.39

3.5.11 WOPI changes
• Update the OmniDocsEJB container name [Defined in OmniDocsEJB.yml file] in

NGOClientData.xml file in between the <endPointURL></endPointURL> tags located inside

the OmniDocs_WOPI\Newgen\NGConfig\ngdbini folder at the mapped location on the

Worker node.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 84

Figure 3.40

Here, od110ejb is the name of the OmniDocsEJB container.

• Update the OmniDocsEJB container name [Defined in OmniDocsEJB.yml file] in IS.ini file in

between the <endPointURL ></endPointURL > tags located inside the

OmniDocs_WOPI\Newgen\NGConfig folder at the mapped location on the Worker node.

For example,

Figure 3.41

• Update the WOPI_SOURCE, OMNIDOCS_REDIRECTURL and CABINETNAME in

WOPIConfiguration.ini file located inside the

OmniDocs_WOPI\Newgen\NGConfig\AddInsConfig folder at the mapped location on the

Worker node.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 85

Figure 3.42

Where,

https://wopi.newgendocker.com is host URL of WOPI container.

https://omnidocs11alpine.newgendocker.com is Host URL of Omnidocs WEB container.

odpostgres15dec is cabinet name.

• Open the web.xml file in edit mode located inside the OmniDocs_WOPI folder at the mapped

location on the Worker node.

• Search for filter-class <filter-class>org.apache.catalina.filters.CorsFilter</filter-class> and

update the <param-value></param-value> tag’s value with OmniDocs URL against <param-

name> antiClickJackingUri</param-name> and * against <param-

name>cors.allowed.origins</param-name>

Figure 3.43

• Add the CSPHeaderAllowedDomains tag in the eworkstyle.ini file located inside the

OmniDocsWeb/Newgen/NGConfig/ngdbini/odwebini folder at the mapped location on

the Worker node.

https://omnidocs11alpine.newgendocker.com/

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 86

 CSPHeaderAllowedDomains=default-src * data: 'unsafe-inline' 'unsafe-eval';

• Add the WOPIOfficeExtensionSuppport and WOPIOfficeExtensionSuppportURL tag in the

eworkstyle.ini file located inside the

OmniDocsWeb/Newgen/NGConfig/ngdbini/Custom/CABINET_NAME folder at the mapped

location on the Worker node.

o WOPIOfficeExtensionSuppport = doc, docx, DOCX, DOC, xls, xlsx, XLSX, XLS, ppt, pptx,

PPTX, PPT, wopitest, WOPITEST, wopitestx, and WOPITESTX

o WOPIOfficeExtensionSuppportURL = https://wopi.newgendocker.com

3.5.12 OmniScanWeb changes
Perform the below steps to register the cabinet in OmniScanWeb:

1. Open the OmniScanWeb using the following URL:

http://<Host-Path URL of OmniScanWeb container>/omniscanweb

For example,

https://omniscan.newgendocker.com/omniscanweb

2. Click Register New Cabinet link on the OmniScan Web login screen.

Figure 3.44

3. Specify the Server URL as given below:

http://<Host-Path URL of OmniDocsWeb container>/NGServlet/servlet/ExternalServlet

For example,

https://omnidocs.newgendocker.com/NGServlet/servlet/ExternalServlet

https://omniscan.newgendocker.com/omniscanweb
https://omnidocs.newgendocker.com/NGServlet/servlet/ExternalServlet

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 87

4. Specify the OmniDocs EJB container name for AppServer IP or Server URL, 8080 for AppServer

Port, and JBOSSEAP for AppServer Type.

Figure 3.45

5. Click Connect.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 88

6. Select the Cabinet Name, Site ID, and Volume ID from the list.

Figure 3.46

7. Click Register.

Figure 3.47

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 89

The registered cabinet appears in the Cabinet Name list on the login screen. Now you can log

into OmniScan Web.

NOTE:

Ensure that the OmniScan_Template_Repository folder is already created in OmniDocs before logging into OmniScan

Web.

3.6 Deployment of containers
Perform the below steps to deploy the containers:

• Deploy the containers on Azure Kubernetes Service from your local machine by executing the

below command or you can deploy them using Azure DevOps Release Pipeline. However, it

recommends deploying the containers using Azure DevOps for better traceability.
kubectl apply –f <YAML_File>

For example,
kubectl apply –f OmniDocsWeb.yml

NOTE:

• To execute the above command, kubectl must be configured on your local server. Refer to the Configuration

of Azure Kubernetes cluster section to run kubectl from your local machine.

• To deploy the containers using Azure DevOps Release Pipeline, Azure DevOps must be configured. Refer to

the Configuration of Azure DevOps Release Pipeline section.

• In Azure DevOps Pipeline, a separate Release pipeline is created for each Docker image like

OmniDocsWeb, OmniDocsWebService, OmniDocsEJB, OmniDocsServices, EasySearch, TEM, and

OmniScanWeb7.0.

For Example,

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 90

Figure 3.48

• Trigger the Release Pipeline to deploy the required Docker containers.

• Once the deployment is done, deployed containers can be visible from the Kubernetes

Dashboard. Refer to the Configuration of Azure Kubernetes cluster to configure the Kubernetes

Dashboard.

Figure 3.49

• Update the container’s replica set from 1 (default value) to any other number in YAML files,

then that number of containers is listed in Kubernetes Dashboard.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 91

• In any case to restart the container then there are two options either redeploy the container

from Azure DevOps Release Pipeline which launches the new container by following up the

rolling update feature of Kubernetes or execute the restart command from Kubernetes’ pod’s

shell.

• The restart command is different for each container.

For example,

• Once the EasySearch11 container is deployed, execute the below command in Kubernetes pod’s

shell for the 1st time to configure the Apache Manifold jobs. After that in subsequent

deployments, this execution is not required.
runESConfigurator.sh

3.7 Cabinet and data source creation
Prerequisites:

• OmniDocsWeb, OmniDocsEJB, and OmniDocsServices are already deployed.

• ALB Ingress Controller is already configured and deployed using the AppGateway-

IngressController.yml file.

• Azure BLOB Storage is already created to store the PN files. PN files are encrypted files that

contain all the added, uploaded, and scanned documents by Newgen products.

Once the above prerequisites are fulfilled, refer the below sections to create the Cabinet and Data
Source.

• Getting started with OSA

• Register JTS Server

• Connecting OSA to the JTS Server

• Creating a Cabinet

• Associating the Cabinet

• Creating a Data Source

Container Name Restart Command

OmniDocsWeb,

OmniDocsWebService
restartjws.sh

OmniDocsEJB restartjboss.sh

OmniDocsServices
restartalarm.sh, restartauthmgr.sh, restartscheduler.sh,restartthumbnail.sh,

restartwrapper.sh

EasySearch restartapache.sh

TEM restarttem.sh

OmniScanWeb7.0 restartjws.sh

OmniDocsWOPI restartjws.sh

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 92

• Registration of the Cabinet

• Creating Site and Volume

3.7.1 Getting started with OSA
Perform the below steps to start the OSA:

1. Since the container is a CLI-based deployment you can’t launch any GUI-based application inside

the container. But you must use the OSA to create a cabinet that is a GUI-based application. In

such a case, deploy OSA to some GUI-based machine either on a local server or on an EC2

instance. Also, add an inbound rule in the Kubernetes worker node’s security group to allow

OSA to communicate with the OmniDocs Services container deployed on that worker node.

2. Once OSA is deployed on a machine, navigate to the OSA folder on that machine and double

click on RunAdmin.bat (For Windows) or RunAdmin.sh (For Linux) to start OSA.

3. When the application is launched. The Login dialog appears.

Figure 3.50

4. Select the user as System and specify the password as system.

5. Click OK to log in. After the successful login, the OSA screen appears displaying the list of

registered services.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 93

Figure 3.51

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 94

3.7.2 Register JTS server
Perform the below steps to register the JTS Server:

1. To register the JTS server, click Register button. The Register New Server dialog appears.

Figure 3.52

2. Select the JTS and specify the public IP address of the Kubernetes Worker node on which the

OmniDocsServices (Wrapper, AlarmMailer, THN, and so on) container is deployed.

For example, suppose there are two worker nodes in the Kubernetes cluster and after deploying

the OmniDocsServices container, it gets deployed to the 1st worker node then specify the IP

address of the 1st worker node. But in a case, 2 replicas are deployed on the OmniDocsServices

container, one on each worker node, in that case, specify the IP address of any worker node.

3. Specify the Admin port of Wrapper service running inside the OmniDocsServices container.

Since Wrapper is running inside the container with Admin port 9996 but that Admin port cannot

be accessed directly. Kubernetes generates a random port (aka NodePort) for each port running

inside the container that is exposed outside the container for public use. To get this NodePort

either from Kubernetes Dashboard or by executing the below command from your local

machine:
kubectl get svc <OmniDocsServices container name>

For example,

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 95

Figure 3.53

Here, Wrapper Admin port 9990 is exposed outside the container and Kubernetes has

generated a random port 31370 as a NodePort. This NodePort keeps changing whenever you

redeploy the container.

Figure 3.54

4. Click OK to register the JTS Server.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 96

3.7.3 Connecting OSA to the JTS Server
Perform the below steps to connect the OSA to the JTS Server:

1. Once the JTS Server is registered, it is displayed in the list in a disconnected state.

Figure 3.55

2. Select the registered JTS Server and click Connect. Once JTS is connected, the Manage button

gets enabled.

3. Click Manage button, after clicking on the Manage button, an entry of the connected JTS server

along with its IP Address is displayed on the upper-left panel in the repository view.

4. Select the JTS from the repository view. The list of already created and associated cabinets,

appears.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 97

Figure 3.56

3.7.4 Creating a cabinet
Perform the below steps to create a cabinet:

For MSSQL:

1. Click Create. The Create Cabinet dialog appears.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 98

Figure 3.57

2. Select the cabinet type that needs to be created from the Cabinet Type area. The Cabinet can be

a Document database, an Image server database, or both.

3. Select the database option from the Database Type section.

4. Specify the initial database size in the Device Size textbox and specify the initial log size in the

Log Size textbox. Else, continue with the default values.

5. Specify the following cabinet information:

• Specify the cabinet name in the Cabinet Name textbox.

• Specify the server name (name of the machine where the MS SQL server is running) in the

Server I.P. textbox.

• Specify the username in the User name textbox.

• Specify the password in the Password textbox.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 99

• Specify the CD key in the CD Key textbox.

• Select the Enable FTS checkbox.

NOTE:

In the case of MSSQL if the Database port is not equal to 1433 (Default port) update the database port in the

DatabaseDriver.xml file located inside the OmniDocsEjb/ngdbini folder kept inside the Azure FileShare before creating

the cabinet.

Figure 3.58

6. Click OK to create the cabinet. The Cabinet created successfully dialog appears.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 100

Figure 3.59

3.7.5 Associating a cabinet
Perform the below steps to associate the cabinet:

For MSSQL:

1. Click Stop to enable the Associate button.

2. Click Associate. The Associate a Cabinet dialog appears with the following tabs:

i. Database tab: Select the database type.

ii. Cabinet properties tab: Specify the cabinet details that you have specified during cabinet

creation.

Figure 3.60

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 101

iii. Connection tab: Specify the maximum and the minimum number of connections that

the JTS should maintain with the database, specify the query time out for the selected

cabinet in the Query timeout text box and specify the refresh interval time for

connection.

Figure 3.61

3. Click Done to associate the selected cabinet. Once the cabinet is associated successfully, it

appears with the list.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 102

Figure 3.62

3.7.6 Creating a data source
Perform the below steps to create the data source:

For MSSQL:

1. Open the<Host-Path URL of OmniDocsEJB container> like

http://ecmsuiteconsole.newgendocker.com.in as defined in the AppGateway-

IngressController.yml file. It automatically redirects to the JBoss EAP 7.4 Admin console.

2. Enter the newgen as username and password system123# respectively to login to the Admin

console. After a successful login, the Red Hat JBoss Enterprise Application Platform screen

appears.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 103

Figure 3.63

3. Go to the Subsystems in the Configuration tab.

4. Go to the Datasources & Drivers. Then, click Datasources.

Figure 3.64

5. Click Plus + icon and select Add Datasource. The Add Datasource dialog appears.

6. For MSSQL Database Server, select Microsoft SQLServer and click Next.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 104

Figure 3.65

7. Provide a DataSource Name and JNDI Name.

• Name: Enter the OmniDocs cabinet name that is cabinet name.

• JNDI Name: java:/same as OmniDocs cabinet name

8. Click Next.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 105

Figure 3.66

9. Select JDBC Driver Name.

10. For MSSQL, select sqljdbc42.jar.

11. Clear Drive Module Name and Driver Class Name textboxes.

12. Click Next.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 106

Figure 3.67

13. Provide the following Connection Setting details and click Next:

• Connection URL:

jdbc:sqlserver://MSSQL_Server_IP:MSSQL_Server_Port;databaseName=CABINET_NAME

• UserName: Enter the SQL Server User Name

• Password: Enter the SQL Server Password

• Security Domain: Keep this blank.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 107

Figure 3.68

14. Click Next on the Test Connection page.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 108

Figure 3.69

15. Click Finish. After the creation of the datasource, a success message appears.

Figure 3.70

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 109

16. Click View Datasource to view the created datasource. The created datasource appears in the

list of Datasource.

Figure 3.71

17. Click View against the datasource. A screen appears with the attributes of the datasource

appears.

18. Click Edit link.

Figure 3.72

19. Clear the Datasource Class textbox and click Save.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 110

Figure 3.73

20. After that restart the OmniDocsEJB container.

21. Once the OmniDocsEJB container is restarted, open the JBossEAP Admin console once again.

22. Go to the Subsystems in the Configuration tab.

23. Go to the Datasources & Drivers. Then, click Datasources.

Select the created data source and click Test connection from the dropdown list. On the

successful data connection, a success message appears.

Figure 3.74

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 111

Figure 3.75

24. Add the below connection pool setting and idle-connection-timeout setting inside the created

DataSource in standalone.xml file located inside the OmniDocsEjb or configuration folder kept

inside the Azure FileShare.

<pool>

 <min-pool-size>100</min-pool-size>

 <initial-pool-size>100</initial-pool-size>

 <max-pool-size>600</max-pool-size>

 <flush-strategy>Gracefully</flush-strategy>

</pool>

<timeout>

 <idle-timeout-minutes>5</idle-timeout-minutes>

</timeout>

For example,

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 112

Figure 3.76

25. Restart the OmniDocsEJB container once again.

3.7.7 Registering a cabinet
Perform the below steps to register a cabinet:

1. Register the cabinet for OmniDocs Admin using the following URL:

http://<Host-Path URL of OmniDocsWeb

container>/omnidocs/admin/main/registration/registration.jsp

For example,

http://ecmsuite. newgendocker.com /omnidocs/admin/main/registration/registration.jsp

Figure 3.77

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 113

All the created cabinets get auto populated in the Cabinet List dropdown list.

2. Select the required cabinet, select the associated site, and specify the Username and Password.

3. Select the Register as Both and click Register. After successful registration, a confirmation

message appears.

Figure 3.78

3.7.8 Creating site and volume
Perform the below steps to create site and volume:

1. Login to the OmniDocs Admin using the following URL:

http://<Host-Path URL of OmniDocsWeb container>/omnidocs/admin

For example,

http://ecmsuite.newgendocker.com/omnidocs/admin

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 114

Figure 3.79

2. After a successful login, click Sites link under Administration.

Figure 3.80

3. Click +Add. The Add Site dialog appears.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 115

Figure 3.81

4. Click Amazon S3 Site.

5. Specify the user-defined site name, Access Key, and Secret Key that have rights to the S3

bucket.

6. Click Save.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 116

Figure 3.82

The added Site appears under Sites in the left pane.

Figure 3.83

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 117

7. Go back to the Home page.

Figure 3.84

8. Select Volumes. The Volumes screen appears.

Figure 3.85

9. Specify the following details:

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 118

• Home Site: Select the newly created Site name.

• Default Path: Select the S3 bucket in which you want to store PN files.

• Volume Name: Specify the user-defined volume name.

10. Click Add.

Figure 3.86

The added volume appears under Image Volumes in the left panel.

Figure 3.87

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 119

11. Go back to the Home screen.

Figure 3.88

12. Click Cabinet Details.

13. Select the added volume from the Default Image Volume using the dropdown

14. Click Save. The Site and Volume are now created successfully.

Figure 3.89

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 120

15. Log in to the OmniDocs Web using the below URL to start.

http://<Host-Path URL of OmniDocsWeb container>/omnidocs/web

For example: http://ecmsuite.newgendocker.com/omnidocs/web

3.8 EasySearch post-deployment changes
Perform the below steps to do EasySearch post-deployment changes:

1. Login to the ApacheManifold Admin using the following URL:

<Host-Path URL of ApacheManifold>/mcf-crawler-ui/login.jsp

For example,

http://ecmsuiteapache.newgendocker.com/mcf-crawler-ui/login.jsp

Figure 3.90

2. Log in with the following credentials:

• User ID: admin

• Password: admin

3. After a successful login, click Jobs tree showing in the left panel.

4. Click Status and Job Management. The below job list appears:

• <CABINET_NAME>_Document

• <CABINET_NAME>_Folder

5. Start both the jobs.

6. Once both the jobs started, the Job’s status appears as Running.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 121

Figure 3.91

3.9 OmniScanWeb: registration of cabinet

Perform the below steps to register the cabinet in OmniScanWeb:

1. Open the OmniScanWeb using the following URL:

http://<Host-Path URL of OmniScanWeb container>/omniscanweb

For example,

https://omniscan.newgendocker.com/omniscanweb

2. Click Register New Cabinet link on the OmniScan Web login screen.

Figure 3.92

https://omniscan.newgendocker.com/omniscanweb

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 122

3. Specify the Server URL as given below:

http://<Host-Path URL of OmniDocsWeb container>/NGServlet/servlet/ExternalServlet

For example,

https://omnidocs.newgendocker.com/NGServlet/servlet/ExternalServlet

4. Specify the OmniDocs EJB container name for AppServer IP or Server URL, 8080 for AppServer

Port, and JBOSSEAP for AppServer Type.

Figure 3.93

5. Click Connect.

6. Select the Cabinet Name, Site ID, and Volume ID from the list.

https://omnidocs.newgendocker.com/NGServlet/servlet/ExternalServlet

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 123

Figure 3.94

7. Click Register.

Figure 3.95

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 124

The registered cabinet appears in the Cabinet Name list on the login screen. Now you can log

into OmniScan Web.

NOTE:

Ensure that the OmniScan_Template_Repository folder is already created in OmniDocs before logging into OmniScan

Web.

4 Configuration of Azure DevOps release

pipeline
This chapter describes the configuration of Azure DevOps Release Pipeline. Refer the below

sections for procedural details.

4.1 Overview
The Build Pipeline and Release Pipeline are separated into two parts. Build Pipeline is done through

the Jenkins server which can be installed on an on-premises machine or a cloud machine. Using the

Azure DevOps Release Pipeline cloud service, you can manage the Release pipeline. In this

architecture, three stages are created that is, Dev, UAT, and Production and in each stage,

deployment is quite different. You can have some more stages depending on the requirements. This

guide describes the configuration of the Azure DevOps Release Pipeline for container deployment

on Azure Kubernetes Service (AKS).

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 125

4.2 CICD pipeline architecture

Figure 4.1

1. The Newgen representative builds the product’s base Docker images on the company’s on-

premises servers using Jenkins.

2. As soon as the Dev team commits the code to the source code repository, the Jenkins pipeline

gets triggered. It pulls the code then compiles them and prepares the build artifacts as well as

creates Docker images and pushes the newly created Docker images to the Azure Container

Registry.

3. As soon as any Docker image is pushed to the Azure Container Registry, Azure DevOps Release

Pipeline triggers the deployment to the Dev environment. Here, you can configure the

performance testing as well as security testing of the application. In Addition, you can perform

manual testing as required.

4. UAT and Production deployments are based on approval and are available on-demand. To

deploy to the UAT environment, you need to trigger the UAT deployment. Upon deployment

trigger, an approval mail is sent to the project manager or the concerned team. As soon as the

project manager approves the go-ahead, UAT deployment gets started automatically.

5. Production deployment is also based on approval, but it is multi-level approval. To deploy a

production environment, you require the approval of all stakeholders, and the production

environment doesn’t get triggered automatically on receiving all the approvals. A manual

intervention mail is sent to the engineer who is supposed to deploy to production with a

checklist. During deployment, all the checklist points get verified before performing the

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 126

production deployment. In case any point of the checklist is not covered, then deployment to

the production gets rejected.

4.3 Configuration of Azure DevOps
Perform the below steps to configure Azure DevOps:

1. Sign in to the Azure DevOps portal at https://azure.microsoft.com/en-in/services/devops/

2. After a successful sign in, click New Project to create a new project.

Figure 4.2

3. Specify the Project name, and Description.

4. Select the Visibility as Private and create the Azure DevOps Release Pipeline for different

Docker Images.

https://azure.microsoft.com/en-in/services/devops/

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 127

4.3.1 Configuration of release pipeline
This section explains how to create Release Pipeline.

NOTE:

Refer the following steps to configure the Release Pipeline for the Docker Images.

• OmniDocsWeb

• OmniDocsWeb_Services

• OmniDocsEJB

• OmniDocsServices

• EasySearch

• TEM

• OmniScanWeb7.0

• OmniDocsWOPI

Perform the below steps to create Release Pipeline:

1. After project creation, the project summary screen appears. Hover over the Repos and select

Files.

Figure 4.3

2. Click Initialize.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 128

Figure 4.4

3. Click More actions and then select the Upload file(s).

Figure 4.5

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 129

4. Browse or drag and drop all the YAML files that have shared and then select Commit.

Figure 4.6

5. Hover over to the Pipelines in the left panel and select Releases.

Figure 4.7

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 130

6. Click New Pipeline button. Select a template dialog appears.

7. Select the Deploy to a Kubernetes cluster template.

Figure 4.8

8. Click Apply. The Stage panel appears.

9. Specify the Stage name and click close icon to close the dialog.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 131

Figure 4.9

10. Enter the unique name for your pipeline and click Save.

Figure 4.10

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 132

11. Specify Comment and click OK on the Save dialog.

Figure 4.11

12. Click Add an artifact. The Add an artifact dialog appears.

13. Click Azure Container Registry under the Source type.

14. Select the Service connection which authenticates the Azure Container Registry.

15. In case Service connection is not created, follow the below steps to create Service connection:

Configuration of Service connection for Azure Container Registry:

• Click Manage link. The Create service connection page appears in a new tab.

• Click Create service connection. The New service connection dialog appears.

• Select Azure Resource Manager as the connection type and click Next.

• Select Service principle (automatic) as the Authentication method.

• Specify the following parameters:

o Subscription as Scope level.

o Select an existing Azure subscription.

o Select the Resource Group in which Azure Container Registry is created.

o (Optional) Specify the Service connection name and Description.

o Select the checkbox Grant access permission to all pipelines.

• Click Save. Once the service connection is created, it appears in the list.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 133

Figure 4.12

16. If the Service connection is already created, then select the created service connection.

17. Select Resource Group from the list in which Azure Container Registry is created.

18. Select the created Azure Container Registry.

19. Select a Docker image for example, ibps5serviceinstanceweb as a Repository.

20. Select Latest as the Default version. Leave the Source alias with its default value and click Add.

Figure 4.13

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 134

21. Once the artifact is added, it appears in the Artifacts. Click Continuous deployment trigger icon.

The Continuous deployment trigger dialog appears.

Figure 4.14

22. Enable the Trigger and specify the Tag filter.

For example,

^latest$ - trigger the release only if the tag is "latest"

v1\.[0-9] - trigger the release for tags like "v1.23", "beta-v1.3-test"

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 135

Figure 4.15

23. Click Close icon to close the Continuous deployment trigger dialog.

24. Click Save.

25. Click Add an artifact. The Add an artifact dialog appears.

26. Click Azure Repos under the Source type.

27. Select the project, Source (repository) and default branch main. Also, keep the other settings as

default.

Figure 4.16

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 136

28. Click Add then Save.

29. Configure three stages: Dev, UAT, and Production, and on each stage deployment process is

different. You can have some more stages depending on the requirements.

4.3.2 Configuration of Dev stage

Perform the below steps to configure the Dev Stage:

1. Click View stage tasks.

Figure 4.17

2. Click Agent Job and then select ubuntu as the Agent Specification.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 137

Figure 4.18

3. Click Add a task to Agent Job + icon and search for the Replace Tokens and add them.

NOTE:

Ensure Replace Tokens task must be the 1st task under the Agent Job.

Figure 4.19

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 138

4. Click Browse Root Directory icon under the Replace Token settings.

5. Select appropriate YAML file (for example, iBPS5.0ServiceInstanceWeb.yml).

6. Copy the content of the Root directory and paste it to the Target files textbox.

7. Leave the other settings as default and click Save.

Figure 4.20

8. Click Kubectl task under the Agent Job.

9. Select Task version 1 and specify the Display name.

10. Select Kubernetes Service Connection as the Service connection type.

11. Select Kubernetes service connection which authenticates kubectl to interact with the

Kubernetes cluster.

12. If Kubernetes service connection is not created, then follow the below step to create

Kubernetes service connection.

13. Configuration of Kubernetes service connection.

• Click Manage link. The Service connections page appears in a new tab.

• Click New service connection or Create service connection. The New service connection

dialog appears.

• Select Kubernetes and click Next. The New Kubernetes service connection dialog appears.

• Select KubeConfig as an Authentication method.

• Copy the content of KubeConfig file.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 139

NOTE:

You can get the KubeConfig file by executing below command:

az aks get-credentials --resource-group <ResourceGroupName> --name

<AzureEKSClusterName>

For example,

az aks get-credentials --resource-group AzureKubernetes --name BPMSuite-

AKSCluster

• Select an existing Azure Kubernetes cluster for example, BPMSuite_AKSCluster

• Specify the Service connection name and Description.

• Select the checkbox Grant access permission to all pipelines and click Verify and Save. Once

the Service connection is created, it appears in the list.

Figure 4.21

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 140

14. If Kubernetes service connection is already created, then select the created connection.

15. Select the Namespace, that is, dev.

16. Select Apply command using the Command dropdown.

Figure 4.22

17. Select the checkbox Use configuration.

18. Select the radio button File path.

19. Browse the AzureFile_PV_PVC.yml file path from the Azure Repos.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 141

Figure 4.23

20. Expand the Advanced tree structure.

21. Select the Check for latest version checkbox.

22. Right click added kubectl task and select Clone task(s).

Figure 4.24

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 142

23. Change the Display name of newly cloned task.

24. Browse the yml file (for example, iBPS5.0ServiceInstanceWeb.yml) path from the Azure Repos.

Figure 4.25

25. Expand the Secrets tree structure.

26. Select dockerRegistry as a Type of secret.

27. Select Azure Container Registry (ACR) as a Container registry type.

28. Select the created Azure service connection for ACR.

29. Select the created Azure container registry.

30. Specify the secret name such as azurepullsecret.

31. Select the Force update secret checkbox.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 143

Figure 4.26

32. Right click cloned kubectl task and Select Clone task(s).

33. You can change the Display name of newly cloned task.

34. Browse the AppGateway-IngressController.yml file path from the Azure Repos.

Figure 4.27

35. Click Save. Now, as soon as any Docker Image is pushed to the Azure container registry with the

tag name sp2, Azure DevOps trigger the deployment to the Dev Stage.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 144

4.3.3 Configuration of UAT stage
Perform the below steps to configure the UAT Stage:

1. UAT deployments are approval based and they are available on-demand. Once you are ready to

deploy to the UAT environment, you just need to trigger the UAT deployment. When you trigger

that deployment, an approval mail is sent to the project manager or the concerned team. As

soon as the approval is provided for the go-ahead, the UAT deployment starts automatically.

2. Go to the Pipeline tab of the Release Pipeline for which Dev stage is configured (for example,

iBPS5-ServiceInstance-Web).

3. Select Dev stage and click Clone icon. A cloned Stage gets created.

Figure 4.28

4. Specify the name of the cloned stage as UAT in the Stage panel.

5. Click Pre-deployment conditions icon of the UAT stage. The Pre-deployment conditions panel

appears.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 145

Figure 4.29

6. Select the Manual Only under the Triggers section.

7. As soon as the trigger type is changed from After stage to Manual Only, the UAT stage appears

in parallel to Dev Stage instead of a series.

Figure 4.30

8. In the Pre-deployment conditions panel, enable the Pre-deployment approvals.

9. Select the list of users or groups who can approve or reject the deployment to this stage.

10. You can select users or groups by typing their names.

11. Select the The user requesting a release or deployment should not approve it checkbox in

Approval policies.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 146

12. Click Close icon to close the Pre-deployment conditions panel.

13. Click Save to save the changes.

Figure 4.31

14. Click View stage tasks link of the UAT stage. Also, make the required changes in the UAT stage’s

tasks as per your requirements.

For example, you can make the following changes in the below tasks:

• Kubectl Task: Kubernetes service connection, Kubectl command, changes in YAML files, and

so on.

4.3.4 Configuration of production stage
Production deployment is also based on approval, but it is multi-level approval. To deploy a

production environment, you require the approval of all stakeholders, and the production

environment doesn’t get triggered automatically on receiving all the approvals. A manual

intervention mail is sent to the engineer who is supposed to deploy to production with a checklist.

During deployment, all the checklist points get verified before performing the production

deployment. In case any point of the checklist is not covered, then deployment to the production

gets rejected.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 147

Perform the below steps to configure the Production Stage:

1. Go to the Pipeline tab of the Release Pipeline (for example, iBPS5-ServiceInstance-Web) for

which Dev and UAT stages are just configured.

2. Select the UAT stage and click Clone icon. A cloned Stage gets created.

Figure 4.32

3. Specify the name of the cloned stage as Production in the Stage panel.

4. Click Pre-deployment conditions icon of the Production stage. The Pre-deployment conditions

dialog appears.

5. Select Manual Only option under the Triggers section.

6. As soon the trigger type is changed from After stage to Manual Only, the Production stage

appears in parallel to Dev and UAT stages instead of a series.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 148

Figure 4.33

7. In the Pre-deployment conditions panel, select the list of users or stakeholders whose approval

is required for the deployment to the Production stage.

8. Select Any Order as an Approval order. It indicates that approval of all Stakeholders is required

(in any order).

9. Select The user requesting a release or deployment should not approve it checkbox in the

select policies.

10. Click Close icon to close the Pre-deployment conditions panel.

11. Click Save to save the changes.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 149

Figure 4.34

12. Click View stage tasks link to the Production stage.

13. Click Add phase options icon in the Tasks tab.

Figure 4.35

14. Select the Add an agentless job.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 150

15. Move Agentless job above the Agent Job in the Tasks tab.

Figure 4.36

16. Click Add a task to Agentless job icon.

17. Add a Manual intervention task.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 151

Figure 4.37

18. Click added task Manual intervention.

19. Specify the checklist points that need to execute before deploying to the production stage.

For example:

Before deploying to the Production, ensure that the below checklists are completed:

• All Major and Catastrophic bugs must be fixed.

• The latest images must be thoroughly tested on the Dev and UAT stages.

• Approval has taken from all stakeholders.

• Deployment downtime has taken from the client.

20. Select the user or group that are supposed to deploy to the production. A manual intervention

mail with the above-mentioned checklist is sent to the engineer who is supposed to deploy to

production with a checklist. During deployment, all the checklist points get verified before

performing the production deployment. In case any point of the checklist is not covered, then

deployment to the production gets rejected.

OmniDocs Configuration and Deployment Guide for Azure Version: 11.3 Page 152

Figure 4.38

21. Make the other required changes in the Production stage’s tasks as per your requirements.

For example, you can make the following changes in the below tasks:

• Kubectl Task: Kubernetes service connection, Kubectl command, changes in YAML files, and

so on.

NOTE:

Refer the above steps to configure the Release Pipeline of other Docker Images.

	Configuration and Deployment Guide for Azure
	1 Preface
	1.1 Revision history
	1.2 Intended audience
	1.3 Documentation feedback
	1.4 Third-party product information

	2 Configuration of Azure Kubernetes cluster
	2.1 Create an Azure Kubernetes cluster
	2.2 Configuration of Azure container registry
	2.3 Configuration of ACR image scanning
	2.4 Create storage account
	2.4.1 Create a BLOB storage
	2.4.2 Create an Azure file share

	2.5 Configuration of Azure cache for Redis
	2.6 Configuration of application gateway ingress controller
	2.6.1 Creation of an application gateway
	2.6.2 Installation of an application gateway ingress controller
	2.6.2.1 Install Helm
	2.6.2.2 ARM authentication using a service principle
	2.6.2.3 Add or update Kubeconfig file
	2.6.2.4 Install ingress controller using Helm

	2.7 Configuration of DNS zone
	2.8 Run Kubectl from local machine
	2.9 Monitor Kubernetes dashboard
	2.10 Azure monitor for container insights

	3 Deployment of OmniDocs containers on Azure Kubernetes service
	3.1 Prerequisites
	3.2 Deliverables
	3.2.1 Docker images
	3.2.2 Configuration files
	3.2.3 YAML files

	3.3 Changes in product's YAML files
	3.4 Changes in application gateway Ingress YAML files
	3.5 Changes in configuration files
	3.5.1 Prerequisites
	3.5.2 OmniDocsWeb changes
	3.5.3 Wrapper changes
	3.5.4 AlarmMailer changes
	3.5.5 LDAP changes
	3.5.6 SSO changes
	3.5.7 Scheduler changes
	3.5.8 ThumbnailManager changes
	3.5.9 TEM changes
	3.5.10 EasySearch changes
	3.5.11 WOPI changes
	3.5.12 OmniScanWeb changes

	3.6 Deployment of containers
	3.7 Cabinet and data source creation
	3.7.1 Getting started with OSA
	3.7.2 Register JTS server
	3.7.3 Connecting OSA to the JTS Server
	3.7.4 Creating a cabinet
	3.7.5 Associating a cabinet
	3.7.6 Creating a data source
	3.7.7 Registering a cabinet
	3.7.8 Creating site and volume

	3.8 EasySearch post-deployment changes
	3.9 OmniScanWeb: registration of cabinet

	4 Configuration of Azure DevOps release pipeline
	4.1 Overview
	4.2 CICD pipeline architecture
	4.3 Configuration of Azure DevOps
	4.3.1 Configuration of release pipeline
	4.3.2 Configuration of Dev stage
	4.3.3 Configuration of UAT stage
	4.3.4 Configuration of production stage

