

NewgenONE OmniDocs

Docker Containers Hotfix Deployment Guide for

Azure

Version: 11.3

Newgen Software Technologies Ltd.
This document contains propriety information of NSTL. No part of this document may be reproduced, stored, copied, or

transmitted in any form or by any means of electronic, mechanical, photocopying, or otherwise, without the consent of

NSTL.

OmniDocs Docker Containers Hotfix Deployment Guide for Azure Version: 11.3 Page 2

Table of Contents
1 Preface ... 3

1.1 Revision history .. 3
1.2 Intended audience ... 3
1.3 Documentation feedback ... 3
1.4 Third-party product information .. 3

2 CI/CD Pipeline .. 4
2.1 CICD Pipeline for the hotfix of Product .. 4

3 Implementation of Hotfix Deployment Pipeline ... 5
3.1 Approach Guide for Build Pipeline ... 5
3.2 Configuration of Jenkins for Build Pipeline .. 11

3.2.1 Prerequisites ..11
3.2.2 Configuration of Jenkins Jobs ..11

3.2.2.1 Pull Docker Image for HotFix ..13
3.2.2.2 Create Docker Image for HotFix ...16
3.2.2.3 Push HotFix Docker Image..21

OmniDocs Docker Containers Hotfix Deployment Guide for Azure Version: 11.3 Page 3

1 Preface
This guide describes the hotfix deployment approach for container based OmniDocs on the Azure.

OmniDocs is Newgen’s flagship product. This document also describes the end-to-end

implementation of the product’s hotfix deployment pipeline.

1.1 Revision history
Revision Date Description

July 2024 Initial publication

1.2 Intended audience
This guide is intended for Cloud Administrators, System Administrators, developers, and any other

seeking information about the deployment of hotfix for container based OmniDocs. The reader

must be comfortable to understand the computer terminology.

1.3 Documentation feedback
To provide feedback or any improvement suggestions on technical documentation, you can write

an email to docs.feedback@newgensoft.com.

To help capture your feedback effectively, request you to share the following information in your

email.

• Document Name

• Version

• Chapter, Topic, or Section

• Feedback or Suggestions

1.4 Third-party product information
This guide contains third-party product information about configuring Microsoft Azure CICD Pipeline for

Container Deployment on AKS Azure Kubernetes Cluster. Newgen Software Technologies Ltd does not claim

any ownership on such third-party content. This information is shared in this guide only for convenience of

our users and could be an excerpt from the Azure documentation. For latest information on configuring the

Azure Kubernetes Cluster and Azure DevOps refer to the Azure documentation.

mailto:docs.feedback@newgensoft.com

OmniDocs Docker Containers Hotfix Deployment Guide for Azure Version: 11.3 Page 4

2 CI/CD Pipeline
The CICD pipeline is used to manage the hotfix deployments with Kubernetes orchestration on

cloud platforms. Here, the separation of the Build Pipeline and Release Pipeline is done into two

parts. The Build Pipeline is done by the Jenkins server that can be installed on-premises or in a

cloud VM. The Release pipeline is managed by Azure DevOps cloud service. In this architecture,

there are three stages that is, Dev, UAT, and Production and on each stage, deployment is quite

different. More stages can be added depending on the requirements.

2.1 CICD Pipeline for the hotfix of Product

Figure 2.1

To deploy the Newgen product’s hotfix, follow the below steps:

1. Pull the product’s base images or latest images that are already deployed in the current

environment from the container registry.

2. Update the hotfix files in the earlier running Docker images and create new Docker images. The

deployment structure of these hotfix files (Dockerfile) is shared along with the hotfix files, which

indicates how to update the Docker images.

3. Push the newly created images to the container registry.

4. As soon as any Docker Image is pushed to the Azure Container Registry, Azure DevOps triggers

the deployment to the Dev environment.

OmniDocs Docker Containers Hotfix Deployment Guide for Azure Version: 11.3 Page 5

5. UAT and Production deployments are approval based and they are called on-demand. Once you

are ready to deploy to the UAT environment, trigger the UAT deployment. When that

deployment is triggered, an approval mail is sent to the concerned team. Upon receiving

approval, the UAT deployment starts automatically.

6. The production deployment is also approval-based, but it is multi-level approval. To deploy to a

production environment, approvals from all stakeholders are required. After getting approvals

from all the stakeholders, deployment to the production environment cannot be triggered

automatically. A manual intervention mail is sent to deploy to production with a checklist. After

evaluating whether all the checklist points are covered or not. If not, then the deployment to

the production gets rejected.

3 Implementation of Hotfix Deployment

Pipeline
The hotfix deployment pipeline is separated into two parts: Build Pipeline and Release Pipeline.

The Build Pipeline is configured on the Jenkins Server and the Release Pipeline is configured on the

Azure DevOps.

For configuration of the Release Pipeline, refer to the OmniDocs 11.3 Configuration and

Deployment guide.

3.1 Approach Guide for Build Pipeline
Following are the steps for an approach guide for the build pipeline:

1. A pre-defined folder structure for the product’s hotfix is present. For that folder structure, the

hotfixes have shared.

For example,

OmniDocs Docker Containers Hotfix Deployment Guide for Azure Version: 11.3 Page 6

Figure 3.1

2. Since the WEB components and EJB components is separated into 2 parts, the Web components

are deployed to the underlying WebServer JWS 6.0k.x and EJB components are deployed to the

underlying AppServer JBoss EAP 7.4.x. The build binaries is segregated like configuration files,

deployable files, and dependent libraries for each Docker container. Some binaries are specific

to the WEB container, some binaries are specific to the EJB container, and some binaries are

common to both containers.

1. Along with the hotfix binaries, a Dockerfile is shared for each Docker Image. Dockerfile is a text

file that contains instructions for building a Docker image. It’s like a script file. End-user needs to

uncomment the 1st or 2nd line respective to the cloud provider: AWS or Azure.

For example,

OmniDocs Docker Containers Hotfix Deployment Guide for Azure Version: 11.3 Page 7

Figure 3.2

3. Docker containers have merged the deployed files and dependent libraries as there are no

dynamic changes in these types of files. Also, they can be merged using Dockerfiles shared along

with hotfixes.

4. Since configuration files are dynamic in nature, they must be kept outside the container. For

which the volume persistence is used and mapped them to external disk storage like Azure

FileShare. So, whenever configuration changes are found in a product’s hotfix, update the

configuration files located at external disk storage along with updating Docker images.

5. If database scripts are found in a product’s hotfix’s DatabaseScripts folder, then execute them

manually through Database Client software.

6. Jenkins Build Pipeline have three jobs:

i. Pull the latest Docker image from the container repository in which the hotfix needs to

be deployed.

ii. Create new Docker images after updating the hotfix binaries.

iii. Push the newly created Docker image to the container registry.

For example,

OmniDocs Docker Containers Hotfix Deployment Guide for Azure Version: 11.3 Page 8

Figure 3.3

7. Before pulling the latest Docker images from the container registry, Jenkins reads the

UserInput.properties file.

8. This properties file contains all the user inputs that are required for condition-based hotfix

deployment.

9. This property file has multiple sections.

For example:

• #Container Registry Info

This section contains the container registry information. Here, provide Azure Container

Registry login server and Azure Container Registry username where the container registry

is created in. Azure Container Registry password is used as encrypted environment

variables in Jenkins jobs.

For example,

Figure 3.4

• #HotFix Info

This section contains the location of a hotfix that you want to deploy.

For example,

HotFix_Location="C:\Users\Administrator\Downloads\OD_11.0_SP0_P00_HF01"

OmniDocs Docker Containers Hotfix Deployment Guide for Azure Version: 11.3 Page 9

• #Docker Image to be updated

In this section, select the Docker image(s) in which you want to deploy the hotfix

binaries. For example, if hotfix is deployed in the OmniDocs WEB container, then set the

OmniDocs_WEB=Y.

For example,

Figure 3.5

• #Docker Image Info

This section contains the information about the source Docker images in which hotfix

binaries is updated or deployed.

For example,

Figure 3.6

OmniDocs Docker Containers Hotfix Deployment Guide for Azure Version: 11.3 Page 10

• #New Docker Image Info with Hotfix changes

This section contains the information about new Docker images that are created after

updating the hotfix binaries.

For example,

Figure 3.7

• #Other user Inputs

This section contains other information that can be used in the Jenkins pipeline.

For example,

Figure 3.8

10. Based on the input provided in the UserInput.properties file, Jenkins pulls the Docker images,

creates new Docker images after updating hotfix binaries, and pushes Docker images to the

container repository.

OmniDocs Docker Containers Hotfix Deployment Guide for Azure Version: 11.3 Page 11

3.2 Configuration of Jenkins for Build Pipeline
This section describes the configuration of Jenkins for Build Pipeline.

3.2.1 Prerequisites
Prerequisites are as follows:

• Operating System: Windows Server 2019 (Edition: Standard or Data Center).

• Java 1.8 update 91 and above.

• Docker Engine 20.10.10 or later version must be installed.

• Azure CLI 2.28.0 or a later version must be installed.

• Cygwin utility must be installed. This utility is used to execute Linux commands on Windows.

• Jenkins 2.235.0 or a later version must be installed with default plug-ins along with the

following plug-ins:

➢ Conditional Build Step

➢ Credentials Binding

➢ Environment Injector

3.2.2 Configuration of Jenkins Jobs
For the hotfix deployment pipeline, Jenkins have three jobs:

1. Pull the latest Docker image from the container repository in which hotfix needs to be deployed.

2. Create new Docker images after updating the hotfix binaries.

3. Push the newly created Docker images to the container registry.

Before creating any job, some server-level configurations in Jenkins are required.

1. Log in to the Jenkins Server.

OmniDocs Docker Containers Hotfix Deployment Guide for Azure Version: 11.3 Page 12

Figure 3.9

2. After successful login, click Manage Jenkins link.

Figure 3.10

3. Click Configure System in the System Configuration section.

OmniDocs Docker Containers Hotfix Deployment Guide for Azure Version: 11.3 Page 13

Figure 3.11

4. In Global properties, define an environment variable PATH with the following values separated

with a semicolon:

• Docker installation path [C:\Program Files\Docker\Docker\resources\bin]

• Cygwin installation path [C:\cygwin64\bin]

• Azure CLI installation path [C:\Program Files (x86)\Microsoft SDKs\Azure\CLI2\wbin]

• Windows System32 path [C:\Windows\System32]

5. For example,
PATH= C:\Program Files\Docker\Docker\resources\bin;C:\cygwin64\bin;C:\Program

Files (x86)\Microsoft SDKs\Azure\CLI2\wbin;C:\Windows\System32

Figure 3.12

6. Save the changes.

3.2.2.1 Pull Docker Image for HotFix
To pull the Docker image for the hotfix, follow the below steps:

1. Click New Item link.

2. Specify the item name or job name and select the project type as Freestyle project.

3. Specify the project description.

OmniDocs Docker Containers Hotfix Deployment Guide for Azure Version: 11.3 Page 14

4. Select the checkbox Inject passwords to the build as environment variables in the Build

Environment section.

5. Specify 1 Job password: ContainerRegistryPassword and specify the Azure Container Registry

password.

For example,

Figure 3.13

6. Add Inject environment variables as a build step task under the Build section.

7. Specify the UserInput.properties file path.

For example,

Figure 3.14

8. Add Conditional step (single) as a build step task under the Build section.

9. Select Execute Windows batch command as Run? and Builder. [‘Run?’ is a condition to decide

whether a ‘builder’ command must run or not].

OmniDocs Docker Containers Hotfix Deployment Guide for Azure Version: 11.3 Page 15

10. Specify the following command for the condition:
@echo off

findstr /I "OmniDocs_WEB=Y" D:\HotFixDeployment\Master\UserInput.properties

11. Specify the following commands for the builder:
@echo off

docker login %ContainerRegistryPath% -u %ContainerRegistryUser% -p

%ContainerRegistryPassword%

docker pull

%ContainerRegistryPath%/%OmniDocs_WEB_ImageName%:%OmniDocs_WEB_Imagetag%

For example,

Figure 3.15

12. Click Save to save the changes. Through above steps, you have performed Hotfix for

OmniDocs_WEB Docker image.

OmniDocs Docker Containers Hotfix Deployment Guide for Azure Version: 11.3 Page 16

13. Here, the condition and builder are set for the OmniDocs_WEB Docker image.

There are more Conditional steps (single) for other Docker images like:

• OmniDocs_EJB

• OmniDocs_Services

3.2.2.2 Create Docker Image for HotFix
To create the Docker image for Hotfix, follow the below steps:

1. Click New Item link showing.

2. Specify the item name or job name and select the project type as Freestyle project.

3. Specify the project description.

4. Add Inject environment variables as a build step task under the Build section.

5. Specify the UserInput.properties file path.

For example,

Figure 3.16

6. Add Conditional step (single) as a build step task under the Build section.

7. Select Execute Windows batch command as Run? and Builder. [‘Run?’ is a condition to decide

whether a ‘builder’ command must run or not].

8. Specify the following command for the condition:
@echo off

findstr /I "OmniDocs_WEB=Y" D:\HotFixDeployment\Master\UserInput.properties

9. Specify the following commands for the builder:
@echo off

set ImageFilePath="%HotFix_Location%"

set SourceImageName=%OmniDocs_WEB_ImageName%

set SourceImageTag=%OmniDocs_WEB_Imagetag%

set DestImageName=%HotFix_OmniDocs_WEB_ImageName%

set DestImageTag=%HotFix_OmniDocs_WEB_Imagetag%

set DockerFileName=Dockerfile_WEB

OmniDocs Docker Containers Hotfix Deployment Guide for Azure Version: 11.3 Page 17

if exist %ImageFilePath% goto found

goto notfound

:found

pushd %ImageFilePath%

copy /y %DockerFileName% %DockerFileName%_temp

if exist %DockerFileName%_temp (

 sed -i s+ContainerRegistryPath+%ContainerRegistryPath%+g Dockerfile_temp

 sed -i s+IMAGE_NAME+%SourceImageName%+g %DockerFileName%_temp

 sed -i s+IMAGE_TAG+%SourceImageTag%+g %DockerFileName%_temp

) else (

 goto DockerfileNotFound

)

pushd %ImageFilePath%

docker build . -t %DestImageName%:%DestImageTag% -f %DockerFileName%_temp

del /Q %DockerFileName%_temp

goto finish

:DockerfileNotFound

echo "%DockerFileName%_temp does not exist."

goto finish

:notfound

echo "HotFix Location does not exist."

:finish

exit /b 0

For example,

OmniDocs Docker Containers Hotfix Deployment Guide for Azure Version: 11.3 Page 18

Figure 3.17

10. Click Save to save the changes.

11. Here, the condition and builder are set for the OmniDocs_WEB Docker image.

There are more Conditional steps (single) for other Docker images like, OmniDocs_Services.

12. For OmniDocs_EJB, use Conditional steps (multiple) as in OmniDocs Hotfix, the

omnidocs_ejb.jar is received instead of omnidocs_ejb.ear. In such a case, extract the

omnidocs_ejb.ear from the existing Docker images, update the latest omnidocs_ejb.jar, and

then create a new Docker image.

13. Add Conditional step (multiple) as a build step task under the Build section.

14. Select Execute Windows batch command as Run? and Builder. [‘Run?’ is a condition to decide

whether a ‘builder’ command must run or not].

15. Add 2 Add step to condition in the Steps to run if the condition is met section.

For example,

OmniDocs Docker Containers Hotfix Deployment Guide for Azure Version: 11.3 Page 19

Figure 2.18

16. Specify the following command for the condition:
@echo off

findstr /I "OmniDocs_EJB=Y" D:\HotFixDeployment\Master\UserInput.properties

17. Specify the following commands for the 1st builder:
@echo off

for /f %%i in ('docker create

%OmniDocs_EJB_ImageName%:%OmniDocs_EJB_Imagetag%') do set RESULT=%%i

set srcFile=/Newgen/jboss-eap-7.4/standalone/deployments/omnidocs_ejb.ear

set destDir=D:\HotFixDeployment\TempDir\OmniDocs_EJB

md %destDir%

docker cp %RESULT%:%srcFile% %destDir%

docker rm -f %RESULT%

set OD_EJB_Location=%HotFix_Location%\EJB\artifacts\deploy

if exist %OD_EJB_Location% goto found

goto notfound

:found

pushd %OD_EJB_Location%

if exist %OD_EJB_Location%\omnidocs_ejb.jar goto continue

goto filenotfound

OmniDocs Docker Containers Hotfix Deployment Guide for Azure Version: 11.3 Page 20

:continue

pushd %OD_EJB_Location%

"%JAVA_HOME%\bin\jar.exe" -uvf %destDir%\omnidocs_ejb.ear omnidocs_ejb.jar

xcopy %destDir%\omnidocs_ejb.ear %OD_EJB_Location%\ /I /Y

del /Q pushd %OD_EJB_Location%\omnidocs_ejb.jar

goto finish

:filenotfound

echo "omnidocs_ejb.jar could not found."

:notfound

echo "%OD_EJB_Location% does not exist."

:finish

RD /S /Q %destDir%

exit /b 0

18. Specify the following commands for the 2nd builder:
@echo off

set ImageFilePath="%HotFix_Location%"

set SourceImageName=%OmniDocs_EJB_ImageName%

set SourceImageTag=%OmniDocs_EJB_Imagetag%

set DestImageName=%HotFix_OmniDocs_EJB_ImageName%

set DestImageTag=%HotFix_OmniDocs_EJB_Imagetag%

set DockerFileName=Dockerfile_EJB

if exist %ImageFilePath% goto found

goto notfound

:found

pushd %ImageFilePath%

copy /y %DockerFileName% %DockerFileName%_temp

if exist %DockerFileName%_temp (

 sed -i s+ContainerRegistryPath+%ContainerRegistryPath%+g Dockerfile_temp

 sed -i s+IMAGE_NAME+%SourceImageName%+g %DockerFileName%_temp

 sed -i s+IMAGE_TAG+%SourceImageTag%+g %DockerFileName%_temp

) else (

 goto DockerfileNotFound

)

pushd %ImageFilePath%

docker build . -t %DestImageName%:%DestImageTag% -f %DockerFileName%_temp

del /Q %DockerFileName%_temp

goto finish

:DockerfileNotFound

OmniDocs Docker Containers Hotfix Deployment Guide for Azure Version: 11.3 Page 21

echo "%DockerFileName%_temp does not exist."

goto finish

:notfound

echo "HotFix Location does not exist."

:finish

exit /b 0

19. Click Save to save the changes.

3.2.2.3 Push HotFix Docker Image
Perform the below steps to push the hotfix Dicker image:

1. Click New Item link given on the left panel.

2. Specify the item name or job name and select the project type as Freestyle project.

3. Specify the project description.

4. Select the checkbox Inject passwords to the build as environment variables under the Build

Environment section.

5. Specify 1 Job password: ContainerRegistryPassword and specify the Azure Container Registry

password.

For example,

Figure 2.19

6. Add Inject environment variables as a build step task under the Build section.

7. Specify the UserInput.properties file path.

For example,

OmniDocs Docker Containers Hotfix Deployment Guide for Azure Version: 11.3 Page 22

Figure 2.20

8. Add Conditional step (single) as a build step task under the Build section.

9. Select Execute Windows batch command as Run? and Builder. [‘Run?’ is a condition to decide

whether a ‘builder’ command must run or not].

10. Specify the following command for the condition:
@echo off

findstr /I "OmniDocs_WEB=Y" D:\HotFixDeployment\Master\UserInput.properties

11. Specify the following commands for the builder:
@echo off

set ContainerRegistryPath=%ContainerRegistryPath%

set ContainerRegistryUser=%ContainerRegistryUser%

set ContainerRegistryPassword=%ContainerRegistryPassword%

set ImageName=%HotFix_OmniDocs_WEB_ImageName%

set ImageTag=%HotFix_OmniDocs_WEB_Imagetag%

set BuildNumber=%ImageTag%-build-%BUILD_NUMBER%

docker login %ContainerRegistryPath% -u %ContainerRegistryUser% -p

%ContainerRegistryPassword%

docker tag %ImageName%:%ImageTag%

%ContainerRegistryPath%/%ImageName%:%ImageTag%

docker push %ContainerRegistryPath%/%ImageName%:%ImageTag%

docker tag %ContainerRegistryPath%/%ImageName%:%ImageTag%

%ContainerRegistryPath%/%ImageName%:%BuildNumber%

docker push %ContainerRegistryPath%/%ImageName%:%BuildNumber%

For example,

OmniDocs Docker Containers Hotfix Deployment Guide for Azure Version: 11.3 Page 23

Figure 2.21

12. Save the changes.

13. Here, set the condition and builder are set for the OmniDocs_WEB Docker image.

There are more Conditional steps (single) for other Docker images like:

• OmniDocs_EJB

• OmniDocs_Services

	Docker Containers Hotfix Deployment Guide for Azure
	1 Preface
	1.1 Revision history
	1.2 Intended audience
	1.3 Documentation feedback
	1.4 Third-party product information

	2 CI/CD Pipeline
	2.1 CICD Pipeline for the hotfix of Product

	3 Implementation of Hotfix Deployment Pipeline
	3.1 Approach Guide for Build Pipeline
	3.2 Configuration of Jenkins for Build Pipeline
	3.2.1 Prerequisites
	3.2.2 Configuration of Jenkins Jobs
	3.2.2.1 Pull Docker Image for HotFix
	3.2.2.2 Create Docker Image for HotFix
	3.2.2.3 Push HotFix Docker Image

