Y newgen

NEMF
Developer Guide

Version: 6.1

http://www.newgensoft.com

Disclaimer

This document contains information proprietary to Newgen Software Technologies
Ltd. User may not disclose or use any proprietary information or use any part of this
document without written permission from Newgen Software Technologies Ltd.

Newgen Software Technologies Ltd. makes no representations or warranties regarding
any software or to the contents or use of this guide. It also specifically disclaims any
express or implied warranties of merchantability, title, or fitness for any particular
purpose. Even though Newgen Software Technologies Ltd. has tested the hardware
and software and reviewed the documentation, it does not guarantee or imply that this
document is error free or accurate regarding any particular specification. As a result,
this product is sold as it is and user, the purchaser, is assuming the entire risk as to its
quality and performance. Further, Newgen Software Technologies Ltd. reserves the
right to revise this publication and make changes in its content without any obligation
to notify any person, of such revisions or changes. Newgen Software Technologies Ltd.
authorizes no Newgen agent, dealer or employee to make any modification, extension,
or addition to the above statements.

Newgen Software Technologies Ltd. has attempted to supply trademark information
about company names, products, and services mentioned in this document.
Trademarks indicated below were derived from various sources.

Copyright © 2024 Newgen Software Technologies Ltd. All Rights Reserved.
No part of this publication may be reproduced and distributed without the prior
permission of Newgen Software Technologies Ltd.

Newgen Software, Registered Office, New Delhi
E-44/13

Okhla Phase - I

New Delhi 110020

India

Phone: +91 1146 533 200

info@newgensoft.com

mailto:info@newgensoft.com

NEMF 6.1 Developer Guide

Contents

Preface 5
REVISION NISTOIY oottt bbbt e bbb bbb s s s st sanen 5
ADOUL TNIS GUIE ..ottt bbbt bbb bbb bbb s s banran 5
INTENAEA QUAIENCE ..ottt 5
REIQTEA AOCUMIENTS ...ttt b s sanen 5
DoCUMENTATION FEEADACK ..ottt ettt bbbt sans 6

Introduction 7

NEMF overview 9

NEMF server architecture
Server architecture diagram
SEIVET DINANY QISTIIDUTION ..oooeee sttt s bbb

NEME ClIENT QICRITECTUIE ettt ettt ettt ns s N
ClIENT COAE AISTITDULION oottt ettt s8R0t n
ClIeNt ArCITECTUIE GIAGIAMN ettt sttt n s 12

Framework components at high level 13

BaSIC ENTITIES ottt 13

FramMEWOTK INTEITACES ...ttt 13

MaNAAtory CONTIGUIATION .ttt bbbt

ClIENT SEIVET INTEIACTION .ottt sttt nen
[INEEIACTION OIDJECT ..ottt s s s ARt b bt
[NEEIACTION MO ..ottt as s es s s s8Rt

APL @NAPOINT URL FOIMNAT oottt
CAllDACK URL FOMMNIAT cottetrieieriiesiiiee it ssse st sessssssssse st ssss st s 58585858
[INTEIACTION MNONITOTING oottt sttt

LOGTING ottt ss s bbb s A A A astssssssse
ClIeNT SIAE COMIPONENT ..ttt s s b s s s s sees

Writing solutions over NEMF

SEIVEE SIA@ ettt sttt a8 8888888888888ttt
Defining server iNterface (QISTrACTIONS) ...ttt saes

WIiting CONCIrete IMPIEMIENTATIONS ..ottt bbb

Pushing data to the ClieNt @SYNCNIONOUSIY ...ttt

How the solution can ChooSe tO AElAY @ MESPONSE ...t bbb ses

DEVEIOPING SOIUTION PIUG N ottt sttt
IMPIEeMENTING @ SOIUTIONINTEITACE. ... e
IMplementing and @XPOSING FACTOIY ...t ssssnes
Implementing and exposing SolutionEventHandlers
Creating solutions. XMl ...

Sample organization.xml

SANMNIPIE CLOUAXIMNI oottt s e bbb bbbt a s st s s s s saes s saneen

NEMF 6.1 Developer Guide

REST APl web app........
Web app structure
FOIAEE STIUCTUIE oottt ees s8££ 8888t
Web.xml e,
Third party libraries
CHIENT SIAE ottt ettt s8Rkttt

NGOpenWebDesktopBase4.0 fOlAEr STIUCTUIE ... e sea 12
NGOpenWebPhonegapBase4.0 folder structure
ClIENT CUSTONN COUE OVEIVIEW ..ottt s sss s sas s s b8 e 80 o888t
DESIGN HTML LEIMIPIATES ..ottt b bbbttt
HTML VIEW [_IOGIN_VIEW.S] ettt
PIEVIEW ..ottt it esses s ss 8858805858815 8 4588445845885 8 58 R R
Implementing a Model ['ng-login-view-script.js’]
CalliNG APIS FrOM TNE MO ..ttt ss sttt
FOrm fOrmMats available IN NEMP ...t sss s ssssss s ss bbbt

Creating platform specific builds for mobile platforms

Preface

Preface

This chapter provides information about the purpose of this guide, details on the
intended audience, revision history, and related documents for the NEMF Developer
Guide.

Revision history

Revision date Description

September 2024 Initial publication

About this guide

This guide provides information on the use cases of various NEMF components. It also
explains how to create the application code using the NEMF framework.

Intended audience

This developer guide is intended for application developers responsible for creating
and modifying the application code using the NEMF framework. The user must have a
good understanding of the NEMF client and server side.

Related documents

The following documents are related to the NEMF Developer guide:

* NEMF Release Notes

e NEMF Deployment Guide

* NEMF Administration guide

e NEMF Installation and Configuration Guide

Version: 6.1 NEMF Developer Guide 5

Preface

Documentation feedback

To provide feedback or any improvement suggestions on technical documentation,
write an email to docs.feedback@newgensoft.com.

To help capture your feedback effectively, share the following information in your email:

e Document name

* \Version

e Chapter, topic, or section
e Feedback or suggestions

Version: 6.1 NEMF Developer Guide

http://%20docs.feedback@newgensoft.com

Introduction

Introduction

NEMF stands for Newgen Enterprise Mobility Framework. NEMF enables the rapid
development of process-centric, context-aware, and device-independent mobile apps
with rich imaging capabilities. Although it is written primarily to cater to the Enterprise
Mobility requirements, it is a full-fledged development framework providing value

across client and server layers.

Value delivered at the server end

* A highly secure, multitenant, flexible, robust, and geography-aware platform to
deploy RESTful APls.
e Allows “Writing to Abstractions”, to provide maximum shielding from variations
in the Enterprise technology landscape.
e Supports serving multiple versions of the solution, to multiple customers, from a
single hosting.
e Can handle multiple communication styles:
> Synchronous
o Asynchronous
e Can handle requests and responses of very large sizes, very efficiently.

o Support for accepting very large requests, in multiple parts, with
subsequent reconstruction at the server-end.

o Support for sending large responses to clients, in multiple parts, in
asynchronous mode.

o Support for sending the paginated response for very large lists in
synchronous mode.

o Support for JISON transfer across the network layer. It has the clear
advantage at the JavaScript-based client layer of being directly recognized
as a JavaScript object without invoking the development overhead of
invoking a parser. Also, it is a more compact and preferred form of data
transfer format.

> JSON parsers for non-JavaScript platforms are readily available.

e Supports server push technology to allow solutions to push changes to business
data or client configuration to clients according to their roles or groups.

Version: 6.1 NEMF Developer Guide

Introduction

* A very simple development framework to write solutions with. Since “Writing to
Abstractions” is at the soul, all components tend to remain in the maximum
reusable state.

e Upcoming possible support for JAX-RS.

> Most of the existing JAX-RS implementations do not allow the “Writing to
Abstraction” concept which holds the key to winning over variability.

> Also, the licensing for most of the existing JAX-RS implementations may not
be permissive enough to be included in our products.

Value delivered at the client's end

e Develop once, run anywhere.

* Provides on-the-move operations, information capture, and accessibility.

e Covers all major mobile platforms as well as desktops (through HTML5, CSS3, and
JS-Phonegap).

* Views can be arranged in a parent-child hierarchy, thus enabling the easy
organization of application views.

e A very agile JavaScript-based MVC model that supports, besides model-based
view generation, the asynchronous cascaded event processing across the
parent-child hierarchy.

* Support for i18n/110nN.

e Out-of-the-box support for Responsive Ul Frameworks such as Bootstrap.

* Image Processing capabilities at client's end.

Version: 6.1 NEMF Developer Guide 8

NEMF overview

NEMF overview

NEMF overview describes the NEMF server architecture and client architecture.

NEMF server architecture

The following sections explain server architecture and server binary distribution.

Server architecture diagram

APIEnd points [Use Cases] Backend Systems
[frch. Festurss Supported] 1. Push Configuration Changes Server Side Framework _l

v Lzl 2. Push BUC instance changes done in the

2. Versioned Enterprise systems

3. Sync/ Asyne / Async 3. Asynchronous Response Delivery
Multiparts <Works over Device Queue maimained in the DB> (Concrete classes will be prepared by

[User Management]

4. JSON Payload
5. Ondemand Payload

Implementation Groups)
Some concrete implementations, however,

i ' Product Core Abstracti
e R (Delivered ey will be provided Out of The Box (0TB) [The | P it Ao ALY
- ¥ " B — I M iy orange ones] 0D User Management / OF

Supp. [31]
7. Debug Mode Supp.
& OWASP compliant
9. Pagination Supprt for List Dat3
Response
10. Response Field Limiting
11. Role Based Access [3.1]
12, Carrylocation Data by Default
13. i18n

Source Code

Rights Management

User [Authentication
Management Interface

Authorization Interface

Will be supported
by IP group [way

MDM Interface i [MDM Solutions]

Image Processor
Interface

Submission Interface

Payment Gateway
Interface

Mewgen IP Airwatch / BoxTone [etc
Implementation

API Servlet(s)

[Channel Variety Supported]
1. Third Party (GCM, etc)
2. Direct Channel (Comet)

[Enterprise Systems]
Template Interface

3. MDMPush Channel Defautt Template Workflow Systems (OF,
Push Manager (XML} Tibco, Talend)/ ERPs / DMS
€ et Claim, ctc) (0D, Sharepoint, CMIS) /
: Management Analytics Interface Custom Applications
o L (Future Releases)
[Use Cases]

1. Autc-Routing to

Poll for updates

correct DMS folder, etc " to BUC Instances
[Use Cases] p— <Will be used By Submission in the backend [Template Managers]

1 Configuration Data Storage Hamager= systems and
2. Store & Forward Frem / Te submit to the

Backend Systems Enterprise System core OmniExchange / Other
3. APIRequest - Response Log (Call Fol Iing Template Managers

Queue [Record) / Audit Log) DB
4. Device Queue (Push Notification) f/

I (Handled by implementation

_Groups} Concrete Implementations for
Store & Forward use case will be Outside our scope Orange Colored items will be OTB

moved over to Mol server later (with source code provided)

Version: 6.1 NEMF Developer Guide 9

Server binary distribution

NEMF overview

The following table describes the server binary distribution:

Artifact name

NCApiCommons.4.0.jar

(Closed Source)

Artifact purpose

This JAR is needed in
Development as well as at
Runtime. It contains all the
needed classes that a solution
writer wants to deal with at the
time of development.

Artifact dependencies

Not applicable

NGApiEngine.4.0 jar

(Closed Source)

This JAR carries the
implementation for APl Engine
(Product Core) that is the heart of
the framework supporting all the
required architectural contracts.
This JAR is needed only at
Runtime. It depends on
NGCAPICommons for the shared
classes.

NGApiCommons.4.0.jar

NCApiWeb.4.0 jar

(Closed Source)

This JAR contains the RestAPI
servlet implementation that
internally invokes API Engine for
processing requests. JAR is
needed only at the Runtime. It
depends on NGApilnternal.

NGApiCommons.4.0.jar
NGApilnternal.4.0.jar

Version: 6.1

NEMF Developer Guide

10

Artifact name

NCApiEssentials.4.0.jar

(Open Source)

Artifact purpose

This JAR contains concrete
implementations for necessary
abstractions that we feel are
essential for all applications,
however, the concrete
implementations provided along
with the Abstractions are by no
means Essential. Solution writers
can write their own Concrete
implementations for these
abstractions. They can even write
their own Abstractions (or extend
existing ones) and their concrete
implementations.

The provided source code can be

used for learning solution writing.

NEMF overview

Artifact dependencies

NGApiCommons.4.0.jar

NEMF client architecture

The following section explains client code distribution and architecture diagram.

Client code distribution

The following table describes the client code distribution:

Artifact name

Artifact purpose

Artifact

(Open Source)

NGOpenWebDesktopBase.4.0.Zip

clients.

desktops.

The artifact supports HTMLS5, CSS3,
and JS-based development for the

This zip contains all the necessary Not applicable
components and scripts that a
solution provider needs to write an
application for Desktop-based

dependencies

Version: 6.1

NEMF Developer Guide

11

Artifact name

Artifact purpose

NEMF overview

Artifact

NCOpenWebPhonegapBase.4.0.Zip

This supports HTML5, CSS3, and JS-
based development for mobile
devices (all major platforms). The
solution written over ‘DesktopBase’
above can be easily ported over
‘PhonegapBase’ (and vice-versa) as
the internal folder structures and
the way a client-side app needs to
be written is more or less the same.

dependencies

Not applicable

There are two base projects that can be used to start the client-side development work.
One is suitable for mobiles and the other for desktops. More about it is discussed later

in the guide.

Client architecture diagram

View Framework

1.Views can be
arranged in Parent-
childrelation to any
depth.

2.Event Cascading
from App-
SuperParentView
(application view)-
Child View hierarchy

3.Event Handling

4.Support for adding
Arbitrary Actions (add
the corresponding
handling logic) on
Views.

5.Internalization/

Localization Support.

[Phonegap]
HTML/ CSS3/ JavaScript

JavaScript assisted view generation

[Native Plug-ins]

Plug-ins for Native Layer Functions

excent View Manaaement

[Native Layer]
1. APICallManager

Notification

Image Processor

Device Capability

Platforms

. View Management F ramework on Native

Responsive Ul is targeted for
HTML (not for native)

An extremely configurable
business app will exist over

phonegap

Version: 6.1

NEMF Developer Guide

12

Framework components at high level

Framework components at high
level

The following sections explain the basic entities, framework interfaces, mandatory
configuration, and more.

Basic entities

The framework provides a few basic entities. The solution writers are required to reuse
these (or subclass these if they need more attributes) so that the core is more tightly
integrated with the solution at run time and can support cases like multi-tenancy and
push events (according to user roles).

All these entities are available in the following package:
com.newgen.mcap.core.external.basic.entities.concrete

Framework interfaces

Following is the list of basic Java interfaces. These interfaces are available in the
com.newgen.mcap.core.external.basic.interfaces package.

Version: 6.1 NEMF Developer Guide

13

Framework components at high level

Interface name Purpose

Abstracted Functionality

All abstractions that a solution writer defines the need to be
extended for the Abstracted Functionality interface.

The interface enables the score to inject APICallContext
objects within the concrete implementation at runtime. The
context object enables solution writers to:

e Get access to APIScopes, which, in turn, enables solution
writers to access or save attributes at the application,
user session, or per-request level. But, since REST APlIs
are supposed to be stateless (more or less), use
‘application’ and ‘session’ scopes very sparingly.

e APICallContext also allows solution writers to call other
APIls, hosted on the core, in a manner that bypasses
HTTP.

The interface also allows solution writers to expose the
solution Version, Abstraction Name, and Identifier Name to
the core. The concrete implementation will, thus, get
registered within the core with the following identity
(“solutionversion/abstractionname/identifier”), and individual
methods get registered as (“solutionversion/
abstractionname/identifier/<methodname>").

JAX--RS annotations must be supported to map these methods in a
way that is closer to pure REST flavor.

Compressible

This interface must be implemented for those solution
domain objects that are required to be compressed and
decompressed on their flight between client and server.
The core will call the interface methods to get and set
compressed and decompressed object images.

Version: 6.1

NEMF Developer Guide

14

Configurable

Framework components at high level

Interface name Purpose

This interface must be implemented for those solution
domain objects that represent solution configuration items.

The core will use the interface methods to satisfy the
following use cases:

e Checks if the underlying configuration has changed
recently.

e |f the configuration has changed, then the new
configuration is queried for (through this interface) and
the core’s internal record of the configuration is
updated.

e Moreover, if the configuration is declared by the
interface to be savable, then the new configuration gets
saved in the RDBMS as well.

Also, if the configuration is required to be pushed to the
device (as specified by an interface method itself) then the
core will push the configuration to the client as well.

ContextBuilder

It provides an opportunity for the solution writer to register its
context with the core. A solution context typically contains
the following:

e Solution configurable.

e Solution abstractions and their concrete

implementations.

e Solution event listeners.

e Organization for which the solution is written.
An object implementing ContextBuilder and known to the
core will be called upon by the core to inform the solution
context to the core so that it can be internalized or registered.

Encryptable

This interface must be implemented for those solution
domain objects that are required to be encrypted and
decrypted on their flight between client and server.
The core will call the interface methods to get and set
encrypted and decrypted object image

GeoFenceable

This interface must be implemented for the solution domain
objects that the solution providers want to get processed only
when they are produced within a defined GeoFence.

The core will throw exceptions if a GeoFenceable object is
found breaching the fence and further processing will be
stopped.

GeoFence can be declared at the Organization account level.

Version: 6.1

NEMF Developer Guide

15

Framework components at high level

Interface name Purpose

JSONable This interface must be implemented for those solution
domain objects that need to transfer their state across the
network in the JSON format.
© Soon there will be support for XML-based transfer as well.

Saveable This interface must be implemented for those solution

domain objects that need to retain their states in data stores.
The core will make sure that all such Objects are persisted or
updated in the data store when received on the request.

Searchable

This provides methods for object graph searching based on
string expressions (like JXPath). It must be noted this is not for
search into the data store.

Streamable

This interface needs to be implemented for those solution

domain objects that need to stream their state across the

network as binary. For example, images. The binary stream
will be packed within JSON.

Mandatory configuration

Solution writers need to provide the following configurable(s) in their XML forms
(current support) for the core to function. The system must be designed in such a way
that the configuration is required to be kept only at the server end; the client side is
configured on the fly by the server using push notifications carrying necessary client
configuration (which might be role-based).

Configurable name Purpose

Cloud

Provided as Cloud.xml

It contains the configuration that carries the Cloud provider-
specific configuration as well as those parameters that are
common across all solutions across all organization accounts.
Since the core is multi-tenant and is supposed to be running
on the cloud, the configurable is named Cloud.xm/. However,
the same configuration will apply for in-premise installations
as well with a single or multiple organization accounts.

Cloud.xml needs to be provided by solution writers only for
the in-premise mode.

Version: 6.1

NEMF Developer Guide

16

Configurable name Purpose

Organization

Framework components at high level

Provided as Organization.xml! (or through Organization
account creation screens planned for the future)

This contains an organization account-specific configuration
that will be common for all solutions running on the core for
this organization.

Solution

Provided as Solution.xml

This contains the references to Solution Interface
implementations, exposed by the solution writers. The main
purpose is to be queried by the core to get the solution
context, to be able to register the solution within itself and
expose its corresponding REST API endpoints.

Version: 6.1

NEMF Developer Guide

17

Framework components at high level

Client server interaction

The server framework supports interactivity with clients of various natures in manners

described in the below subsections.

Interaction object

The interaction model is available in the
com.newgen.mcap.core.external.apiengine.interaction.entities.concrete package.

Object name Purpose

APIRequest

Version: 6.1

APIRequest models a typical request entity that a client can
make to the NEMF server. A JSON corresponding to this
entity is sent through Https post request for making the API
call.

It has the following attributes that a solution needs to deal
with.

e apiEndPointDetails — It specifies the API endpoint
method where this request needs to hit. It has the
following format ("organizationld|solutionVersion|
abstractionNamelidentifiermethodName").

e apiResponse — It is the corresponding response entity
for the request.

e mode — Request mode. A mode can be Sync, Async, or
Async Multiparts. Async and Async MultiPart requests
will receive a correlationID immediately.

e packedResources — Resource objects that are carried by
this request. These serve as the parameters to the API
endpoint.

e responseFieldLimiting — It is required to limit the object
graph packed within the response. It contains the
comma-separated list of object graph attributes that
need to be packed within the response. Attributes that
are not on this list, are not packed in the response.

e hitTimeStamp — It represents the time stamp when the
request was received.

NEMF Developer Guide

18

Version: 6.1

Framework components at high level

Object name Purpose

debuglevel — If logs are needed, then the debug level
logs that should be packed can be specified on the URL
as well.

requestState — It represents the state of a specific
request.

device — It models the device that generated the
request. It can be null.

user — The user account that generated the request.
The user object must contain a validated authentication
token.

group — Group for which request was generated.

role — Role for which request was generated.
organization — Organization for which request was
generated.

geolocation — The geo-location where the request was
generated.

clientGivenlD — It specifies the request ID at the client-
end.

clientRequestType — It specifies the request type at the
client-end.

logsNeededInResponse — It specifies whether the
server-side logs need to be packed in the response.
compressOutput — It specifies whether to compress the
response before sending it back to the client.
encryptOutput — It specifies whether to encrypt the
response before sending back to the client.
compressinput — It specifies whether to compress the
request before sending it to the server.

encryptinput — It specifies whether to encrypt the
request before sending it to the server.

pagination (Boolean) — It is used when a giant list
response is expected; Pagination can be turned on via
this parameter.

recordsPerPage — It is used to specify the number of list
items to pack per page.

requestedPageNumber — Which page number to fetch.
The default is page number 1.

listSession — A unique ID against which the entire list is
maintained on the server-side. Paginated chunk is
created using this.

partNumber — It specifies the part number of the
request when sent as Async multipart request.

NEMF Developer Guide

19

Framework components at high level

Object name Purpose

e totalNumberofParts — It specifies the total number of
parts of the Async multipart request.

e totalBytesInTheParts — It specifies the total bytesin a
particular part of the request.

e byteArrayBeginindex — It specifies the ‘begin index
array’ of the chunk sent in the particular part of a
request sent as Async multipart request.

e byteArrayEndIindex — It specifies the ‘end index array’ of
the chunk sent in the particular part of a request sent as
Async multipart request.

e totalNumberofbytes — It specifies the total number of
bytes of the Async multipart request.

e correlationld — It is used for synchronizing the
asynchronous request-response at the client and server-
end.

e solutionVersion — It is used for defining the solution
version.

e underProcess — It is used to process the asynchronous
request in the cluster mode. If the request has been
picked by the job instance of one node, the value of this
attribute must be “true”.

APIResponse

Version: 6.1

APIResponse models a typical response entity expected from
the NEMF server. A JSON corresponding to this object is
received by the client over HTTP or via one of the Async (Push)
channels. It has the following attributes of relevance:

e correspondingRequest — The request that generated
this response. It is not necessary that a response has a
corresponding request. A solution can generate a
response to notify of a server-side event as well.

e mode — It specifies whether the response is received
synchronously or asynchronously.

e packedResources — The resource objects returned by
the API end point.

e logs — The logs generated at the server (if requested via
request.logsNeededInResponse).

e responseTimeStamp — It represents the time stamp
when the response of request was sent.

e createdTimeStamp — It represents the time stamp
when the response was created on the server.

e responseState — It represents the state of a specific
response.

NEMF Developer Guide

20

Version: 6.1

Framework components at high level

Object name Purpose

e targetDevice — The device to which response is
targeted, required for Async responses

e targetUser — If the target device is not set, the async
response will be sent to all the devices that are
associated with the target user.

e targetGroup — If the target user is not set, async
response will be sent to all the devices of all the users for
a particular group.

e targetRole — If the Target Group is not set, Async
response will be sent to all the devices of all the users for
a particular group.

e organization — If all the target entities are not defined,
the Async response will be sent to all the users on their
associated device. It is mandatory for all Async
responses.

e clientGivenld — It is required for the client-end response
ID.

e serverRequestType — It specifies request type at server-
end.

e compressed — It specifies whether the response is
compressed or not.

e encrypted — It specifies whether the response is
encrypted or not.

e geoFenceBreachDetected — It is set to true if the
request is outside the GeoFence and the request is not
saved.

e currentPage — If a paginated response is expected in
the request, then this specifies the page number
contained in the response.

e listSessionHandler — It carries the listSession identifier
against which the entire list is maintained at the server.

e partNumber — It specifies the part number of a
particular part if the bulk response is broken into
multiple parts.

e totalNumberOfParts — It specifies the total number of
parts of the broken response.

e totalBytesInThisPart — It specifies the total bytesin a
particular part of the response when sent as a broken
response.

e byteArrayBeginindex — It specifies the ‘begin index
array’ of the chunk sent in the particular part of the
response sent as a broken response.

NEMF Developer Guide

21

Framework components at high level

Object name Purpose

e byteArrayEndIindex — It specifies the ‘end index array’ of
the chunk sent in the particular part of the response
sent as a broken response.

e totalNumberofbytes — It specifies the total number of
bytes of the Async multipart request.

e correlationld — It is used for synchronizing the
asynchronous request-response at the client and server-
end.

e solutionVersion — It is used for defining the solution
version.

e customMessage — It is used to send a customized
notification to the desired devices.

Interaction model

The interaction model explains the APl endpoint and callback URL format.

API endpoint URL format

Interaction objects defined in the previous sections are sent and received through the
APl URL in the following format:
https;//<serverContext>/<debuglevel(Optional)>/api

o The pure REST flavor where domain entity model resources are exposed over URLs for CRUD operations is not
yet supported. However, it is planned to do it with the JAX-RS compliant release.

Interaction with Rest APl endpoint can take the following forms (managed internally
within the APICallManager component):

* APIRequest is sent in synchronous mode and a corresponding synchronous
APIResponse is received on the return path:

o If while executing #1, APIRequest is found to be exceeding a configured
multipart trigger value, then the request is broken (at client within
APICallManager) into multiple smaller parts that are sent as asynchronous-
multipart APIRequests one after the other. These parts get assembled back

Version: 6.1 NEMF Developer Guide 22

Framework components at high level

at the server when all parts are received, and then the request proceeds as
an async request (#2 — a correlation ID is received in this case).

o [f while executing #1, APIResponse, on the return path, is found to be
exceeding the trigger value, then it gets broken on the server into multiple
smaller parts and is routed via async path (push channels) as multiple
async-multipart responses. These parts get assembled at the client within
APICallManager and delivered to the client layer as a single big response.

e APIRequest is sent in asynchronous mode. The request is received at the server
and registered in the data store for processing later. A correlation ID, however, is
generated and returned immediately (packed within a synchronous
APIResponse). Later, one of the server-side events will process the async request
and return the response asynchronously over push channels (with the same
correlation ID).

e |f while executing #2, APIRequest is found to be exceeding a configured
multipart trigger value, then the request is broken (at client within
APICallManager) into multiple smaller parts that are sent as asynchronous-
multipart APIRequests one after the other. These parts get assembled back at
the server when all parts are received and then the request proceeds as before
(#2).

e |f while executing #2, APIResponse, on the return path, is found to be exceeding
the trigger value, then it gets broken on the server into multiple smaller parts
and is routed via async path (push channels) as multiple async-multipart
responses. These parts get assembled at the client within APICallManager and
delivered to the client layer as a single big response (with a correlation ID).

Request-response pairs are maintained at the Client, as well as at the Server for the
organization-defined configurable retention period (Organization.xml). This helps with
production-level debugging. For further information, refer to the Interaction
Monitoring section.

Callback URL format

Callback URLs are defined in the following format (eventHandlerldentifier points to a
SolutionEventHandler object exposed by the Solution Interface).
https.//<serverContext>/<debuglevel(Optional)>/api/organizationld/solutionVersion/
eventHandlerldentifier

Version: 6.1 NEMF Developer Guide

23

Framework components at high level

Interaction with the Callback URL is needed in the case API solution to be connected
with other third parties such as Payment Gateways or Social Networks. These third
parties need to pass the data to NEMF API solutions on one of these Callback URLs
configured for the solution. A callback is handled by a SolutionEventHandler object
implemented by the solution and a solution may define as many call-back handlers as
are needed.

Interaction monitoring

JMX-based real-time monitoring is supported for the following monitoring and probing
parameters:

* Monitoring

o Checks how many organization accounts are operational currently.

o Checks the services currently operational for a given organization.

o Checks how many requests are coming per second for a given organization
(in real-time).

o Checks how many requests are coming per second across all the
organizations (in real-time).

o Checks how many synchronous responses are sent back per second for a
given organization (in real-time).

o Checks how many synchronous responses are sent back per second across
all organizations (in real-time).

o Checks how many asynchronous responses are sent back per second for a
given organization (includes single as well as multi-part responses, in real-
time).

o Checks how many asynchronous responses are sent back per second across
all organizations (includes single as well as multi-part responses in real-
time).

o Average time (milliseconds) between a sync request and a sync response
for a given organization (averages over the last X request-response pairs,
where “X" is configurable).

o Average time (milliseconds) between sync request and its async response
for a given organization (in case the response is too huge). This includes the
time it takes for sending all the parts (averages over the last X request-
response pairs, where “X" is configurable).

Version: 6.1 NEMF Developer Guide 24

Framework components at high level

> Average time (milliseconds) between an async request and its async
response for a given organization. In the case the response is too huge then
this includes the time it takes for sending all the parts (averages over the
last X request-response pairs, where “X" is configurable).

o Average time (milliseconds) between sync request and a sync response
across all organizations (averages over last X request-response pairs, where
“X" is configurable).

o Average time (milliseconds) between sync request and its async response
across all organizations. In case the response is too huge, then this includes
the time it takes for sending all the parts (averages over the last X request-
response pairs, where “X" is configurable).

> Average time (milliseconds) between async request and its async response
across all organizations. In the case the response is too huge, then this
includes the time it takes for sending all the parts (averages over the last X
request-response pairs, where “X" is configurable).

* Probing (this helps with debugging production cases)

> Given a resource Name, retrieve all resource IDs that match the name.
> Given a response ID, retrieve the response along with its full log and

exception traces.
> Given a correlation ID, retrieve all matching responses from connected

clients as well as the server.

Logging

NEMF provides the logging functionality by exposing a common class and a defined
method. The description and methods of the logging class are as follows:

e Class — LogMe
This class is used for providing the support of printing all kinds of logs.
* Method — logMe(int level, Throwable throwable)

oint level — This represents the level of the log.
o Throwable throwable — log string.

Sample Example

LogMe.logMe (LogMe .LOG LEVEL DEBUG, "callApiAsynchronousMultipartsApiResponse>>" +
toReturn.todson()) ;

Version: 6.1

NEMF Developer Guide

25

Client
side
component

Framework components at high level

Client-side features or components are as follows:

e The client framework is written purely in JavaScript.

* NGView component:

o Client views can be arranged hierarchically.

> Async events are routed through the hierarchy from root to leaf so that
views can update their states.
o Supports MVC out of the box.

Method name

Description and

Returns

Parameter
NGView.loadView/(callback) This method loads a view. Void
Parameter:
callback — callback method.
NGView.showView This method renders a view. Void
(viewNameToBeShown, Parameters:
viewData) e viewNameToBeShown — The
name of the view to be
shown.
e viewData — The data to be
shown on the view.
NGView.hideView() This method hides a view. Void

NGView.isHidden()

This method checks if the view is
hidden or not.

e True — If the view
is hidden.

e False — if the view
is visible.

NGView.addChildView

This method adds a child view to

Void

(childView) the parent view.
Parameter:
childView — The child view is to
be added.
Version: 6.1 NEMF Developer Guide

26

Framework components at high level

Description and

Method name Returns
Parameter

NGView.removeChildView This method removes a particular | Void
(childViewName) child view from the parent view.

Parameter:

childViewName — The name of

the child view to be deleted.
NGView.removeAllChildren() This method removes all the child | Void

views from the parent view.

NGView.searchViewFromRoot
(viewName)

This method searches for a view
starting from the root view.

Parameter:

viewName — The name of the
view to be searched.

Searched view

e APICallManager component

Allow clients to interact with the REST API endpoints. It shields the complexity of
REST interaction (as explained in previous sections) by exposing a very simple

interface.

Method name

Description and

Parameter

Returns

callback, isBackgroundCall)

NCGAPICallManager.callApi(request, This method sends

requests to the server

from it.

Parameters:

the APl Request
object.

and receives responses

e request — This is

API| Response
object

e callback — optional
callback method

e isBackgroundCall —
Boolean value to
determine if the call
isto be sent in the
background.

e Interfaces

Version: 6.1

NEMF Developer Guide

27

Version: 6.1

Framework components at high level

o Storage — In this interface, the framework provides the capability of storing
user data in types of storages:

-JSTORAGE — Storing the data into the file system.

-FILESYSTEM — Storing the data into the file system.

-SQLITE — Storing the data into the SQLite mobile database.

-IndexedDB — Storing the data in an Indexed DB on the browser.

- Submission Manager — In this interface, the framework provides the
capability of submitting the Business Use Case (BUC) to the defined targets.
The framework provides the support of the below targets:

-SERVER-OMNIFLOW — Submit the BUC Instance to OMNIFLOW at
the server-side.

-SERVER-OMNIDOCS — Submit the BUC Instance to OMNIDOCS at the
server-side.

- CLIENT-WIFIPRINTER — Submit the BUC Instance to the WiFi printer
at the client-side.

- CLIENT-EMAIL — Submit the BUC Instance to a specified email on the
client-side.

-SERVER-OMNIFLOW-APPROVAL — For handling getinstances and
submit calls for Approval App.

- Image Processing — In this interface, the framework provides the
capability of performing the image processing operation on the
attachment, i.e,, the captured image. Below are the supported image
processing types provided by the framework:

-NEWGEN_CLIENT — Performing the desired image processing
operation at the client-side by using Newgen Image Processing
capability.

-NEWGEN_SERVER — Performing the desired image processing
operation at the server-side by using Newgen image processing
capability.

-JAVACRIPT_IP_CLIENT — Performing the desired image processing
operation at the client-side by using Newgen image processing
capability in core JAVASCRIPT.

- PARASCRIPT_CLIENT — Performing the desired image processing
operation at the client-side by using Parascript image processing
capability.

-LEADTOOLS_CLIENT — Performing the desired image processing
operation at the client-side by using LeadTool image processing
capability.

NEMF Developer Guide 28

Version: 6.1

Framework components at high level

- ldentity Provider — This file contains an interface for authenticating with
third-party APls. Below are the supported third-party APlIs:
- Facebook — Authenticating the user with Facebook.
-OmniDocs — Authenticating the user with OmniDocs.
- Twitter — Authenticating the user with Twitter.
- DB operations — This file contains an interface for database operations.
-taffyDB — This file contains an implementation of database operations
for TaffyDB.
- Social Media Provider — This file contains an interface for different social
media sharing implementations. Below are the supported social media:
- Facebook — Media sharing with Facebook.
- Twitter — Media sharing with Twitter.
- Template Manager — This file contains an interface for handling BUC
Template operations.
-Core — This file contains an implementation of the interface for
handling BUC templates and their related operations.
- BUC Async Utils — This file contains an interface for handling
asynchronous updates.
o Core — This file contains an implementation of the asyncUtils interface for
handling asynchronous updates.

APIls name Description and Parameter Returns
NGBUCAsyncUtils. This method will update the business use | Void
updateBUCInstance case instance in the defined tray.
(buclnstance,trayArray, Parameters:
callback)

e buclnstance — An object of type
NGBusinessUseCase

e trayArray — array of trays

e callback — callback method to
return the result.

NGBUCAsyncUtils. This method updates a new Ul of the Void
updateWhitelabelinglnfo application.
(whitelLabelingConfi) Parameter:

whitelLabelingConfig — Boolean value for
processing whitelLabelingConfiguration.

NEMF Developer Guide

29

APIls name

NGBUCAsyncUtils.
updateBUCTemplate

Framework components at high level

Description and Parameter

This method updates the application if
any change is made in BucTemplate at

Returns

Void

(bucTemplateconfiguration)

the server side.

Parameter:

contains new BucTemplate on the
server-side.

bucTemplateconfiguration — XML which

- BUC Config Utils — This file contains an interface for configuration-based

utilities of the application.

o Core — This file contains an implementation of the config-utils interface.

APls name Description and Parameter Returns
NGBucConfigUtils. Method will store RestAPI URL in the Void
setRestApiEndPoint local cache.

(restAPIEnd Point) Parameter:
restAPIEndPoint — Exact path of rest
APl in string format
NGBucConfigUtils. Method will set the sort order in the Void

setSortKeysForBuc
(businessUseCase
Template, keys)

businessUseCaseTemplatestored
locally.
Parameters:

e businessUseCaseTemplate — An
object of type
NGBusinessUseCaseTemplate

e keys — indexing field to sort the
BUC

NGBucConfigUtils.
getRestApiEndPoint

Retrieve rest APl endpoints stored in
local storage.

Returns rest
APl endpoints.

NGBucConfigUtils.
setcertificate
PinningInTo
(ngCertificate)

This will store the expected certificate
info in the local store in an encrypted
form.

Parameter:

ngCertificate: the object of
NGCertificate type

Void

Version: 6.1

NEMF Developer Guide

Version: 6.1

Framework components at high level

APls name Description and Parameter Returns
NGBucConfigUtils. Handles JISON NGApi response Void
getGeofence received corresponding to
Configuration getGeofenceConfigurationFromServer.
FromServerResponse Parameter:

Handler (response) response — Object of APIResponse

type
NGBucConfigUtils. Deprecated Void
getEncryptionKey Request server for the configured
FromServer encryption key from the server side.
NGBucConfigUtils. Deprecated Void
gerEncryptionKeyFrom Handles JSON NGApi response
ServerResponseHandler received corresponding to
(response) getEncryptionKeyFromServer

Parameter:

response — Object of APIResponse

type.
NGBucConfigUtils. This method fetches geo-fence Void
getGeoFenceConfiguration | configuration from the server side.
FromServer
NGBucConfigUtils. This method sets the user preferences. | Void

setUserPreference
(ngUserPreference)

Parameter:

ngUserPreference — an object of type
NGUserPreference. UserPreferences
will be stored locally, it will be saved for
the logged-in user.

NGBucConfigUtils.
configurelndexField
FormFieldMap
(buclnstance,indexing
Fields)

This method returns the value
corresponding to the indexing fields
received from the server.

Parameters:

e buclnstance — Business Use Case
e indexingFields — Array fields
whose value is to be mapped.

Returns the
mapped
values or

null incase the
thereis no
value in
indexingFields.

NGBucConfigUtils.
getUserPreference

This method returns the user
preferences stored locally.

Returns the
user
preferences
stored locally.

NEMF Developer Guide

3]

APls nhame

NGBucConfigUtils.
getSortKeysForBuc

Framework components at high level

Description and Parameter

This method returns the sort keys for
BUC.

Returns

Returns the
sort keys for
BUC.

NGBucConfigUtils.
getCertificatePinninglnfo

This method retrieves the certificate
info from the local store.

Returns the

certificate info
retrieved from
the local store.

NGBucConfigUtils.
getConfiguration
FromServer

This method gets the system
configurations like retention
frequency, retention trays, idle timer
limit, data encryption algorithm, online
mode and share mode from the server.

Returns true
or false based
on

whether the
configuration
was received
successfully or
not.

NGBucConfigUtils.
getConfigurationFrom
ServerResponseHandler
(response)

Handles JISON NGAPIRresponse
received corresponding to
getConfigurationFromServer.

Parameter:
response — Object of APIResponse
type.

Returns true
or false based
on

whether the
configuration
was

received
successfully or
not.

NGBucConfigUtils.
getDeviceKey

This method gets the device key from
the server if the key provider used is
'Configuration' and sets it in jStorage.

Returns true
or false based
on

whether the
device key
was
successfully
received or
not.

Version: 6.1

NEMF Developer Guide

32

Version: 6.1

Framework components at high level

APls name Description and Parameter Returns
NGBucConfigUtils. This method gets the current active Void
getActiveVersion(callback) | version of the IPA or APK configured

on the server. It is then matched with
the current app's version and an
update is provided accordingly.
Parameter:
callback — callback method to send
the response back.
NGBucConfigUtils. Handles ISON NGAPIRresponse Returns
getActiveVersion received corresponding to formatted
ResponseHandler getActiveVersion. JSON
Parameter: response in
response — Object of APIResponse case of
type. success,
exception text
ifan
exception
is received
from server
and
null if no
response is
received.

- BUC Data Utils — This file contains an interface for client-server interaction
and BUC-related operations

o Core — This file contains the implementation of the
data-utils interface for client-server interaction and

BUC-related operations.

APIs name

NGBucDataUtils.getTray
ForBuclnstance
(businessUseCase
Instance)

Description and Parameter

Identify the tray(s) this Business Use
Case instance is currently deposited
into.

Parameter:
businessUseCaselnstance [in]: An
object of type NGBusinessUseCase.

Returns

Returns the list of

NGTray objects.

NEMF Developer Guide

33

APIls hame

NGBucDataUtils.get
InstancesForTray

(ngTray)

Framework components at high level

Description and Parameter

Function will get the instances (array)
stored locally in the specified tray.

Parameter:

ngTray: An object of type NGTray.

Returns

Returns the list of
NGBusinessUse
Case objects.

NGBucDataUtils. push
InstancelnTray
(businessUseCase
Instance, ngTray)

Push a specified instance in the
specified tray.
Parameters:

e businessUseCaselnstance — An
object of type
NGBusinessUseCase.

e ngTray — An object of type
NGTray.

Returns the
updated
NGBusinessUse
Case object.

NGBucDataUtils.getBuc
InstanceFrom
Uniqueld(buc,
uniqueld)

Method will return the Business Use
Case Instance from storage by Unique
ID.
Parameters:

e buc — Business Use Case

e uniqueld — Unique ID

Return the instance
of BUC

NGBucDataUtils.getList
OfAttachments
(business
UseCaselnstance)

Method will returns array of
NGAttachment objects from defined
Business

Use Case Instance.

Parameter:

businessUseCaselnstance — An object
of type NGBusinessUseCase.

Return the array of
all

attachments
containing
buclevel
Attachments ,form
LevelAttachments,
sectionlLevel
Attachments field
LevelAttachments

NGBucDataUtils.list
PendingWork
(business
UseCaselnstance)

Lists all forms that are pending to be
filled in a given BUC instance

Parameter:

businessUseCaselnstance — An object
of type NGBusinessUseCase.

List all forms that
are
pending to be filled

Version: 6.1

NEMF Developer Guide

34

Version: 6.1

APIls hame

NGBucDataUtils.pop
InstanceFrom

Framework components at high level

Description and Parameter

Pop the specified instance in the
specified tray.

Returns

Return object of
NGBusiness

Tray(business Parameters: UseCase.
UseCaselnstance, e businessUseCaselnstance — An
ngTray) object of type
NGBusinessUseCase.
e ngTray — An object of type
NGTray.
NGBucDataUtils.put Method will insert the current geo- Void
GeoTag location.
(ngObject,callback) Parameters:
® ngObject — An object of type
any JS-Object which is defined
above.
® callback — callback method for
handling the return.
NGBucDataUtils.save Method will save the Business Use Void

BUC(buclnstance)

Case instance into the defined storage.

Parameter:

Instance — Object of NGBusinessUse
Case.

NGBucDataUtils.search
BUCInstances
(instanceArray,
pattern)

Method will return array of
matching NGBusiness
UseCase objects with specified search
pattern.
Parameters:
e instanceArray — array of
NGBusiness
UseCase objects
e pattern — Search pattern.

Return array of
matching
NGBusinessUse
Case objects.

NEMF Developer Guide

35

Version: 6.1

APIls hame

NGBucDataUtils.submit
BUCInstance(destination,
business
UseCaselnstance)

Framework components at high level

Description and Parameter

Method will instantiate the
correct NGSubmission
Manager interface to submit the buc
Instance
Parameters:
e destination — destination (server
or client) where to submit the
BUC object
e businessUseCaselnstance — An
object of type
NGBusinessUseCase.

Returns

Return Boolean
(either submit or
not).

NGBucDataUtils.handle
Response(response)

It passes the response coming from
the server and fetches the data
provided by the server.

Parameter:
response — Object of APIResponse
type

Return array of
resources
received from the
server.

NGBucDataUtils.save
BUC(buclnstance)

Method will save the Business Use

Case instance into the defined storage.

Parameter:

Instance — Object of NGBusinessUse
Case.

Void

NGBucDataUtils.search
BUCInstances
(instanceArray,
pattern)

Method will return array of
matching NGBusiness
UseCase objects with specified search
pattern.
Parameters:
e instanceArray — array of
NGBusiness
UseCase objects
e pattern — Search pattern.

Return array of
matching
NGBusinessUse
Case objects.

NEMF Developer Guide

36

APIls hame

NGBucDataUtils.submit
BUCInstance(destination,
business
UseCaselnstance)

Framework components at high level

Description and Parameter

Method will instantiate the
correct NGSubmission
Manager interface to submit the buc
Instance
Parameters:
e destination — destination (server
or client) where to submit the
BUC object
e businessUseCaselnstance — An
object of type
NGBusinessUseCase.

Returns

Return Boolean
(either submit or
not).

NGBucDataUtils.handle
Response(response)

It passes the response coming from
the server and fetches the data
provided by the server.

Parameter:
response — Object of APIResponse
type

Return array of
resources
received from the
server.

NGBucDataUtils.save
BUC(buclnstance)

Method will save the Business Use

Case instance into the defined storage.

Parameter:

Instance — Object of NGBusinessUse
Case.

Void

NGBucDataUtils.search
BUCInstances
(instanceArray,
pattern)

Method will return array of

matching NGBusiness

UseCase objects with specified search
pattern.

Parameters:

e instanceArray — array of
NGBusinessUseCase objects
e pattern — Search pattern.

Return array of
matching
NGBusinessUse
Case objects.

Version: 6.1

NEMF Developer Guide

37

APIls hame

NGBucDataUtils.submit
BUCInstance(destination,
business
UseCaselnstance)

Framework components at high level

Description and Parameter

Method will instantiate the
correct NGSubmission
Manager interface to submit the buc
Instance
Parameters:
e destination — destination (server
or client) where to submit the
BUC object
e businessUseCaselnstance — An
object of type
NGBusinessUseCase.

Returns

Return Boolean
(either submit or
not).

NGBucDataUtils.handle
Response(response)

It passes the response coming from
the server and fetches the data
provided by the server.

Parameter:
response — Object of APIResponse
type

Return array of
resources
received from the
server.

NGBucDataUtils.get
ConfiguredForms
InBuc(buc
TemplateName)

It fetches and returns the list

of ‘Forms’ configured in the provided
BUC template.

Parameter:

bucTemplateName — name of BUC
Template

Returns list of
Forms

NGBucDataUtils.get

It fetches and returns the list of

Returns list of

getConfigured
TraysinBUC
(business
UseCaseTemplate)

configuration from Business Use Case
Template Parameter:

businessUseCaseTemplate — An

object of type
NGBusinessUseCaseTemplate.

Configured ‘Attachments’ configured in the Attachments
AttachmentsinBuc provided BUC template.
(buc Parameter:
TemplateName) bucTemplateName — name of BUC
Template
NGBucDataUtils. Method will retrieve all tray Void

Version: 6.1

NEMF Developer Guide

38

APIls hame

NGBucDataUtils.set
TrayNames
ForBUC(businessUse
Caselnstance,
ngTray)

Framework components at high level

Description and Parameter

This methods push the given tray into
the BUC instance object given tray.
Parameters:
e object — NGBusinessUseCase
businessUseCaselnstance
e object/string — NGTray ngTray
1. string — String ngTray

Returns

Returns
NGBusinessUse
CasebusinessUse
Caselnstance

on success.

NGBucDataUtils.remove
TrayNames
FromBuc(buclnstance
Tray)

It removes the name of the trays in
tray attributes of BUC instance.

Parameter:

buclnstanceTray — name of tray

Returns updated
BUC instance.

NGBucDataUtils.get
FormProgress
Percentage(form)

It calculates the percentage
completion of corresponding form.

Parameter:

form — object of NGForm type.

Returns
percentage
completion

NGBucDataUtils.

getProgress
Percentage
(business
UseCaselnstance)

It calculates the percentage
completion of corresponding BUC
instance.

Parameter:
buc — object of NGBusinessUseCase
type

Returns
percentage
completion

NGBucDataUtils.
getListOf
FormAttachments
(form)

Fetches and returns the list of
attachments attached with the
respective form.

Parameter:

form — object of NGForm type

Array of
attachments

NGBucDataUtils.
getAttachments
Statistics
(buclnstance)

Creates an object that fills itself with
array of all the attachments, BUC level
attachments, Form level attachments,
Selection level attachments, Field level
attachments.

Parameter:

buclnstance — object of
NGBusinessUseCase type

JSON objects
containing
array of
attachments

at various levels.

Version: 6.1

NEMF Developer Guide

39

APIls hame

NGBucDataUtils.encrypt
AppData(data)

Framework components at high level

Description and Parameter

Encrypts provided data using secret
key fetched from the server.

Parameter:

data — a string or object to be
encrypted

Returns

Encrypted data

NGBucDataUtils.

decryptApp
Data(encryptedData)

Decrypts provided encrypted data
using secret key received from the
server.

Parameter:

encryptedData — Encrypted data to be
decrypted

Void

NGBucDataUtils.encrypt
AppData_V2(data)

Encrypts provided data using secret
key and data encryption algorithm
fetched from the server.

Parameter:

data — a string or object to be
encrypted

Encrypted data

NGBucDataUtils.

Decrypts provided data using secret

Decrypted data as

saveAttachment
(key, attachments,
storageType, buc)

required storage time with the name
provided in key parameter.
Parameters:

e key — string indicating file name

e attachments — object of

NGAttachment type
e storageType — type of storage
e buc: name of BUC

decrypt key and data encryption algorithm a
AppData_V2 fetched from the server. string
(encryptedData) Parameter:

encryptedData — a string or object to

be decrypted
NGBucDataUtils. It stores an attachment object in the Void

Version: 6.1

NEMF Developer Guide

40

Version: 6.1

APIls hame

NGBucDataUtils.

fetchAttachment
(key, storageType,

buc, callback)

Framework components at high level

Description and Parameter

It fetches an attachment saved by the
name provided in the key and returns
the result as a parameter to the
provided
callback function.
Parameters:
e key — string indicating file name
e storageType — type of storage
e buc — name of BUC
e callback — callback function for
returning result.

Returns

Returns
attachment.

NGBucDataUtils. Deletes provided BUC instance from all | Void

clearBuclnstance the trays it is present.

FromTrays Parameter:

(bucinstance) buclnstance — object of
NGBuisnessUseCase type

NGBucDataUtils. Deletes provided BUC instance from Void

removeBUC
(buclnstance)

the BUC instance list.
Parameter:

buclnstance — object of
NGBuisnessUseCase type

NGBucDataUtils.

isBucEncrypted
(bucName)

It determines whether the instance of
the provided BUC requires encryption
or not.

Parameter:

bucName — name of BUC

Returns Boolean

NGBucDataUtils.
getListOf
Alllnstances|)

Creates and returns lists of all the BUC
instances present in the application.

Returns array of
BUC instances.

NGBucDataUtils.
getListOfBuc
Instances
(bucName)

It creates and returns list of BUC
instances present which belongs to
the corresponding BUC.

Parameter:

bucName — name of BUC

Returns list of
BUC instances.

NEMF Developer Guide

41

APIls hame

NGBucDataUtils.
getindexingFields
ForBuc(bucName)

Framework components at high level

Description and Parameter
It fetches the indexing fields of list of a
BUC.
Parameter:

bucName — name of BUC

Returns

Returns list of
indexing fields.

NGBucDataUtils.
sortBuclnstances
(instancelist,
indexingFields)

Sorts the BUC instances of the
corresponding instances on the basis
of corresponding instances indexing
fields.
Parameters:
® instancelist — list of instances
to be sorted.
® indexingFields — JSON object
having indexing field
information.

Returns sorted
instance list.

NGBucDataUtils.create
SortedString

(jsonObject,fieldNames,

sortingString,check)

This method will return the string by
concatenating the values of JSON
corresponding to fieldNames.
Parameters:
® jsonObject — Output model of
BUC
¢ fieldnames — Array fieldNames
® sortingString — String value
created as a result of indexing
fields.
® check — internal check value
for execution of the method.

Returns String
sorting
String on success.

NGBucDataUtils.
sendRequest

(request,callback)

This method sends request to the
server.

Parameters:
® request — API| Request

® callback — function object that
returns

® the response asynchronously

Returns response
received
from the server.

Version: 6.1

NEMF Developer Guide

42

Version: 6.1

APIls hame

NGBucDataUtils
deleteAttachment
(key,storageType,buc)

Framework components at high level

Description and Parameter

This methods will delete the
attachment on local storage (based on
storage type) of a particular

BUC name.

Parameters:
® Key — String key
® storageType — String
storageType
® buc — String buc

Returns

Void

NGBucDataUtils.getGeo
Coordinates(callback)

It fetches latitude and longitude
coordinates of the current location.

Parameter:

callback — callback function for
returning result

Returns JSON
containing
latitude and
longitude
information.

NGBucDataUtils.
getMaster
ListFromServer ()

This method fetches the list of master
names configured at server.

Returns Array of
master names.

NGBucDataUtils.
getMasterListFrom
ServerResponse
Handler

(response)

This method is corresponding to
handle the response with respect
to getMasterListFromServer.

Parameter:
apiResponse — Object of APIResponse
type

Returns Array of
master names.

NGBucDataUtils.
getMasterData
FromServer (master)

This method fetches the master
options list for a master configured at
server.

Parameter:

object — Object of type NGMaster
whose data is to be fetched

Returns Object of
Master

type filled with
options data.

NGBucDataUtils.get
MasterDataFrom
ServerResponseHandler

(response)

This method is corresponding to
handle the response with respect
to getMasterDataFromServer.
Parameter:

object — NGAPIResponse response
NGAPI

Response object

Returns Object of
Master

type filled with
options data.

NEMF Developer Guide

43

APIls hame

NGBucDataUtils.check

ForMasterUpdate
(master)

Framework components at high level

Description and Parameter
This method checks for any updates in
masters at the server side.

Parameter:

object — object of type NGMaster

Returns

Returns updated
master object.

NGBucDataUtils.
checkForMaster
UpdateResponse
Handler(response)

This method is corresponding to
handle the response wrt to
checkForMasterUpdate.
Parameter:

object: NGAPIResponse response
NGAPI

Response object

Returns updated
master object.

NGBucDataUtils.

This method gets the instance of Trays

Returns NGTray

getTrayFromTray corresponding to tray name and BUC | object
Name(current) Name. on success.
BucName,trayName) Parameters:

® string — String

currentBUCName

® string — String trayName
NGBucDataUtils. This method sends attachment to Void
sendAttachment server in background.
ToServer Parameter:
(attachment attachmentDetailsJISON — attachment
DetailsJSON) object.
NGBucDataUtils. This method checks for update on the | Void

checkForMasters
Update(masterList)

present masters list all at once.
Parameter:

masterList — the list of masters to be
updated.

Version: 6.1

NEMF Developer Guide

44

Version: 6.1

APIls hame

NGBucDataUtils.
getlinstanceskFor
RetentionTray(buc,
ngTray, callback)

Framework components at high level

Description and Parameter

This method sets the tray object
according to the required user, and
returns a tray object.

Parameters:

® buc — the buc in which the tray
is configured

® ngTray — the tray for which the
instances have to be fetched

¢ callback — callback method to
send
the response back.

Returns

Void

NGBucDataUtils.
getMasterData
FromServer (master)

This method fetches the master
options list for a master configured at
server.

Parameter:

object — Object of type NGMaster
whose data is to be fetched

Returns Object of
Master

type filled with
options data.

NGBucDataUtils.get
MasterDataFrom
ServerResponseHandler

(response)

This method is corresponding to
handle the response with respect to
getMasterDataFromServer.
Parameter:

object — NGAPIResponse response
NGAPI

Response object

Returns Object of
Master

type filled with
options data.

NGBucDataUtils.check
ForMasterUpdate
(master)

This method checks for any updates in
masters at the server side.

Parameter:

object — object of type NGMaster

Returns updated
master object.

NGBucDataUtils.
checkForMaster
UpdateResponse
Handler(response)

This method is corresponding to
handle the response wrt

to checkForMasterUpdate.
Parameter:

object: NGAPIResponse response
NGAPI

Response object

Returns updated
master object.

NEMF Developer Guide

45

Version: 6.1

APIls hame

deleteBUCInstance
OnLongPress

Framework components at high level

Description and Parameter

This method deletes a buc instance
when it is longpressed on dashboard.

Returns

Void

addWaterMark(img,
angle, watermarkText,
fontSize,

fontType, transparency,

This method adds water mark on the
provided image.
Parameters:
e img — the image on which water
mark is
e to be applied
e angle — the angle of the
watermark.
e WatermarkText — the text to be
applied as the watermark.
e FontSize — fontsize of the

Base64 data of the
watermark applied

image.
watermarkColor, watermark text
positionX, positionY) e transparency — the transparency
of the watermark text.
e Watermarkcolor — the color of
the water mark text
e positionX — the x position of the
watermark.
e PositionY — the y position of the
watermark.
This method runs the retention job on
)) the configured trays.
retentionPolicyJob
Parameter:)
(asyncResponse) Void
asyncResponse — the event generated
for
retention job.
pushCrash This method fetches the crash logs
LogsToServer() from the device (if any) and pushes the | Void
file to server.
This method logs the user out of the)
logout i Void
current session.
This method updates the
updateApk APK downloaded from the server or Void

play store

NEMF Developer Guide

46

APIls hame

Framework components at high level

Description and Parameter

This method downloads the APK from

Returns

Version(callback)

callback — callback method to return
the
version number.

downloadApk . . Void
the url received in the API response.
This method gets the current version
of the running app.
getAppCurrent Parameter:)
Void

- BUC Device Utils — This file contains an interface that includes media
capture using device utilities.
o Core — This file contains the implementation of uiUtils interface for Ul
utilities and media operations in the application.

APls name Description and Parameter Returns
invokeCamera Will invoke plug-ins to invoke camera Returns an
ForlmageCapture for image capture. NGAttachment
(parameters, callback) Parameters: object.

e parameters — reserved for future
use.
e callback — callback method for
handling the return.
invokeCamera Method will invoke a camera through Returns a
ForBarcodeCapture plug-in for scanning barcode. decoded
(parameters, callback) Parameters: bar-code
e parameters — reserved for future | String.
use
e callback — callback method for
handling the return.
invokeCamera This will invoke a camera through plug- | Callback
ForZoneCapture in for capturing the Zone drawn by the

(parameters, callback)

user on the captured image and
returns the array or co-ordinates.
Parameters:
e parameters — reserved for future
use.
e callback — callback method for
handling the return.

Version: 6.1

NEMF Developer Guide

Version: 6.1

Framework components at high level

APIls name Description and Parameter Returns
invokeCamera Method will call plug-in to invoke Will return an
ForAdvancelmage camera for image capture. NCAttachment
Capture(parameters, Parameters: object
callback) parameters : reserved for future use

callback: callback method for handling
the return.
invokeCamera This will invoke plug-in to invoke Returns an
ForVideoCapture camera for video capturing. NGAttachment
(parameters, callback) Parameters: object.
e parameters — reserved for future
use.
e callback — callback method for
handling the return.
invokeCamera Enables user to capture multiple Required
ForMultiplelmage images at a time.
Capture(callback) Parameter:
callback — callback function for
returning result
invokeStart Method for voice capture. Returns an
VoiceCapture Parameters: NGAttachment
(parameters,callback) e parameters — reserved for future | OPject.
use.
e callback — callback method for
handling the return.
invokeStop Method for stop voice capture Void
VoiceCapture()
invokeGallery Method for image, video, and audio Returns an
Selection selection from existing gallery items. array of
(parameters, callback) Parameters: NGAttachment
e parameters — reserved for future | OPjects.
use.
e callback — callback method for
handling the return.
NEMF Developer Guide 48

Version: 6.1

APls hame

getMedialist
FromDevice
(path,successCallback,
errorCallback)

Framework components at high level

Description and Parameter

This method will fetch all files from the
folder specified in the path.
Parameters:

e path — path of the folder, for
example gallery.

e successCallback — success
Callback method for handling the
return.

e errorCallback — error Callback
method for handling the return.

Returns

Returns array
of files

with absolute
path.

invokeCustomCamera
Forlmagecapture
(parameters,success
Callback,errorCallback)

This Method will call custom camera
plug-in.
Parameters:
e parameters: It is JISON that
contains:
o height — Targeted height of
the image.
o width — Targeted width of
the image.
o quality — Targeted quality of
the image.
o autoFocus — Targeted focus
of the image.
e successCallback — It is a method
called on the success of plug-in.
e errorCallback — It is a method
called in case of error caused in
the plug-in.

Will return an
NGAttachment
object.

- BUC Ul Utils — This file contains an interface for Ul utilities and media

operations.

o Core — This file contains the implementation of uiUtils interface for Ul

utilities and media operations in the application.

NEMF Developer Guide

49

Version: 6.1

APls hame

invokelmageViewer(attachment)

Framework components at high level

Description and Parameter

This method will open
attachment in HTMLS5 screen.
Parameter:

attachment — attachment is an
NGAttachment object containing
image.

Returns

Void

invokeVideoPlayer(attachment)

Method will start video play.
Parameter:

attachment — attachment is an
NGAttachment object containing
video.

Void

invokeAudioPlayer(attachment)

Method will start audio play.
Parameter:

attachment — attachment is an
NGAttachment object containing
audio

Void

lockAppUl()

Method will lock Application Ul.

Void

unlockAppUl()

Method will unlock Application Ul.

Void

showView(viewName)

This method displays the
mentioned view.

Parameter:

viewName — view to be displayed.

Void

setOnlineOfflineConfig

This method handles switching of
app from offline to online mode
and vice versa.

Void

- Master ManagerUtils — In this interface the framework provides utility
methods for the master data received from the server.

- [Storing data in file system]

-FILESYSTEM

-SQLITE [Storing the data in SQLITE mobile database]
- DB-FROM-SERVER [Fetching an entire DB of Master data from server

and saving it on client]

- DB-FROM-ASSETS [Use a Master DB file packed along with the ipa/

apk].

NEMF Developer Guide

Framework components at high level

APls name Description and Parameter Returns
NGMasterManager. Method will show the history of Void
setMasterListison masters
(masterDatalson) coming from server.

Parameter:

masterDatalson — Array of masters
NGMasterManager. Method will retrieve the list of Returns the
getMasterListJson masters from persistent storage. array of master
(callback) Parameter: list

Callback — It is a function that will

be automatically called after

retrieving result

from the persistent storage.
NGMasterManager. Method will restore the data of Void
setMasterDataFor specific master.
MasterKey Parameters:

(masterKey,masterData)

e masterKey — Name of the
master.

e masterData — Data for the
master.

NGMasterManager.
getMasterData
ForMaster
(masterName,callback)

Method will retrieve data for
specific master

that is stored in persistent storage.
Parameters:

e masterName — Name of the
master.

e Callback — It is a function that
will be automatically called
after retrieving

e result from the persistent
storage.

Returns the
value of
master data in
the Json
format

Version: 6.1

NEMF Developer Guide

51

Framework components at high level

APls name Description and Parameter Returns
NGMasterManager. Method will retrieve data for Returns the
getMatserData specific master value of
(masterKey,callback) that is stored in persistent storage. | master data in

Parameters: the Json
e masterKey — Name of the format
master.
e Callback — It is a function that
will be automatically called
after retrieving the result from
the persistent storage.
Method will retrieve the values of Returns

NGMasterManagetr.
getColumnSpecific
MasterData (masterKey,
columnName, callback)

specific
column of specific master.
Parameters:

e masterKey — Name of the
master

e columnName — Input column
name for which user needs to
get data.

e Callback — It is a function that
will be automatically called
after retrieving result from the
persistent storage.

master value
with respect to
columnin the
form of array.

NGMasterManagetr.
getColumnSpecific
MasterData (masterKey,
columnName, callback)

Method will retrieve the values of
specific

column of specific master.
Parameters:

e masterKey — Name of the
master.

e columnName — Input column
name for which user needs to
get data.

e Callback — It is a function that
will be automatically called
after retrieving result from the
persistent storage.

Returns
master value
with respect to
columnin the
form of array.

* Key Provider — In this interface, the framework provides functionality to get the
secret key using either of the below two implementations:

Version: 6.1

NEMF Developer Guide

52

Framework components at high level

> AWS (Amazon Web Service) — Secret key is different for each user and is
received from AWS.
o Configuration — Secret key is same for each user as configured on the
server.
Methods:
-getEncryptionKeyFromServer
-getEncryptionKeyFromServerResponseHandler
- PDF Generator — This interface provides functionality to generate PDF
with either a static HTML string or some data and/or attachments from the
form currently open.
Methods:
-generatePdfWithHtmIString — a PDF file can be generated using a
static HTML string.
-printNemfPDF — a PDF file can be generated using some data from
the current form and/or attachments (images only).
-To access these APIs the following methods have been exposed in ng-
buc-data-utils-core.js:
* $NGDatautilsimpl.generatePdfWithHtmIString(configuration, callback)

var configuration = {
"showInExternalPdfViewer": true,
"attachPdfWithBuc": true,
"margin”: [1,0,1,0],
"pageBreak": "",
"attachmentName": "nemf-pdf-generate",
"htmlTemplate®”: '<div class="form-section-body panel-body form-section yesOrNo"
id="basicDetails"></div>"'

}
Key name Type Default value PEINEIS
margin Number or 0 PDF margin(in jsPDF units). Can
array be a single number too.
[vMargin, hMargin] or [top, left,
bottom, right].
pageBreak Array or string | Contains .class as | Controls the page break
“.eg” or #id as behaviour in the pdf. Can also be
“#eg” an array [“.eg”, “#eg"].

Version: 6.1 NEMF Developer Guide 53

Key name

htmITemplate

Type
String

Framework components at high level

Default value

Passvaluein”
single quotes

Remarks

Restriction:
e Image tag can contain
only base 64 data.
e Must not contain
comments.
e Must pass as a single line
and in enclosing “div".

showlnExternalPdf

Viewer

Boolean

true

To generate a pdf and get its
base 64 data or to show in an
external viewer only mark it as
“true”.

attachPdfWithBuc

Bool

true

If you want to attach PDF with
BUC instance you need to pass
the “attachWithBuc” tag as
“true” else pass it as “false”.

AttachmentName

String

Pass name of the attachment
 where you

want to attach your generated
PDF. If you do not need

to attach the PDF to the BUC,
pass it as “" else provide the
name.

Version: 6.1

NEMF Developer Guide

54

Framework components at high level

var configuration = {
"showInExternalPdfViewer": true,
"attachPdfWithBuc": true,
"margin”: [1,0,1,0],
"pageBreak": "",
"attachmentName": "nemf-pdf-generate",
"htmlTemplate”: '<div class="form-section-body panel-body form-section yesOrNo"
id="basicDetails"></div>'

}

NGBucDataUtils.generatePdfWithHtmlString(configuration, function(response){
spinner.hideSpinner();

var message = response["message”]
if(message == "success"){
var responseMessage = response["responseMessage"]

customBootboxAlert($NGDataUtilsImpl.getTextValue(responseMessage, "pdfGenerator"));

Yelse{
customBootboxAlert($NGDataUtilsImpl.getTextValue(message, “"pdfGenerator"));
}

i

* $NGDataUtilsimpl.printNemfPDF(configuration, attachmentNames, callback)

var configuration = {
"showInExternalPdfViewer": true,
"attachPdfWithBuc": true,
"mainLogo": undefined,
"attachmentName": "nemf-pdf"

Remarks

mainLogo String | “ base 64 data of the logo. If you don't pass logo base
64 data then it will take the default value and create
a PDf.

showlnExternalPdf | Bool | true To generate a PDF and get its base 64 data or to

Viewer show in an external viewer only mark it as “true”.

attachPdfWithBuc | Bool | true If you want to attach PDF with BUC instance you

need to pass the “attachWithBuc” tag as “true”. Else
pass it as “false”.

Version: 6.1

NEMF Developer Guide

55

Framework components at high level

Remarks

AttachmentName

String

Pass name of the attachment where you want to
attach your generated PDF. If you do not need to
attach the PDF to the BUC, pass it as “". Else provide
the name.

To add a captured image attachment to the PDF generated using form data, follow the

below steps:

1. Create an array with details of the attachments to be added.
2. Pass the array in the calling of the method as shown:

var configuration = {

}

telse{
}

i

"showInExternalPdfViewer": true,
"attachPdfWithBuc": true,
"mainLoge": undefined,
"attachmentName": "nemf-pdf"

var formFront = {"isFormLevel": false , "isSectionLevel®: true, "sectionName": "applicantDetailsSection-1", "formName":
"ClaimerForm", "attachmentName":"applicant-signature-1"}

var attachmentNames = [formFront]

NGBucDataUtils.printNemfPDF(configuration,attachmentNames, function(response){
spinner.hideSpinner();

var message = response["message”]
if(message == "success"){

customBootboxAlert("Pdf attached successfully");

customBootboxAlert(message);

Here, attachmentNames is the array which contains the details of the form
attachments which need to be added to the generated PDF file. The parameters are

defined as below:

e isFormLevel — true if the attachment is form level, false otherwise
e isSectionLevel — true if the attachment is section level, false otherwise
e sectionName — the name of the section as present in the form, in which the

attachment exists

e formName — name of the form in which the attachment present

e attachmentName — name of the attachment as present in the form.
To configure which elements need to be added to the generated PDF add an
additional class ‘pdf-group’ and an attribute ‘alias’ to the immediate or nearest

Version: 6.1

NEMF Developer Guide

56

Framework components at high level

div element of the corresponding form element. The alias(if provided) is used

instead of the actual field ID in the PDF.

'<div class="form-group M“) <input id="account-number"
ismasked="true" maskType="partial" class="form-element fieldValue mtlO"

type="number" onblur="NGFormValidation.checkAccountNo (this)"
name="account-number" required> <label class="fieldName" aliaS=“My
Account No." for="account-number">Account Number</label> </div>'+

Common configurations for PDF generation:
If it is required to attach the generated PDF file to the form currently open, a new

attachment element needs to be created in the view as follows:

'<1i> <a href="#" focusValue="true" photoWidth = "" photoHeight=""

photoQuality="" class="attach Edf—a ttachment" attachmentLevel

"form" attachmentFieldId ="ClaimerForm" attachmentName="nemf-pdf-generate"
= Itlll

id="nemf-pdf-generate" minAttachments="1" maxAttachments

Plug-ins
* JailBreakDetection (iOS only) — NGJailBreakDetection.isJailBroken

(successCallback, errorCallback).
This method tells whether the device is jail broken or not.

Parameters:
o successCallback — It is a method called on the success of plug-in.

o errorCallback — It is a method called in case of error caused in the plug-in
* Aadhar Biometric — This plug-in is used to capture thumb impression using a

capturing device.

Version: 6.1 NEMF Developer Guide

Framework components at high level

Method name Description and Parameter Returns
NGAadharBiometricPlugin.captureThumb | This method is used for Byte code of
Impression(successCallback, capturing the thumb the thumb
errorCallback) impression. impression

Parameters: captured.

e successCallback —Itis a
method called on the
success of plug-in.

e errorCallback — Itis a
method called in case of
error caused in the plug-
in.

e Advance Camera — This plug-in is used to capture image and then perform
multiple imaging operations on that particular captured image.

Description and

Method name Returns
Parameter
NGCAdvanceCameraManager.capturelmage | This method will outlmg: processed
UsingAdvanceCamera(successCallback, capture the image and | image
errorCallback, quality) allow performing a

seqguence of imaging
operations on the
captured image.

Parameters:

e successCallback —
It is a method
called on the
success of plug-in.

e errorCallback — It
is a method called
in case of error
caused in the
plug-in.

e quality — This
parameter defines
quality of image.

e App Initialization — This plug-in is used to store white labeling information
(Foreground color, background color and Folder name) received from the server.

Version: 6.1 NEMF Developer Guide 58

Method name

NGAppDatalnitializationManager.set
ApplnitializationInfo(initData,
successCallback, errorCallback)

Framework components at high level

Description and Parameter

This method will provide the
background and foreground color for
the native plug-ins and the name of
the folder in which the app data gets
saved.

Parameters:

e initData — It is a JSON that has
data to be used by the plug-in.

o backgroundColor —
Background color for the
native plug-in.

o foregroundColor —
Foreground color for the
native plug-in.

o appStorageFolderName —
Name of the folder where
app data is to be stored.

e successCallback — Itis a
method called on the success of
plug-in.

e errorCallback — It is a method
called in case of error caused in
the plug-in.

Returns

outlmg:
processed
image

NGAppDatalnitializationManager.check
ForFolderUpdation(successCallback,
errorCallback)

This method will detect whether the
application on device is launched
first time or not, also it determines
presence of file system folders in
device memory.

Parameters:

e successCallback — Itis a
method called on the success of
plug-in.

e errorCallback — It is a method
called in case of error caused in
the plug-in.

JSON
object
with
folder
existence
and app’s
primary
data.

Version: 6.1

NEMF Developer Guide

59

Framework components at high level

Method name Description and Parameter Returns

NGAppDatalnitializationManager.delete | This method will enable deletion of Void

SdCardFolder(result, successCallback, file system folders from the device
errorCallback) memory.
Parameters:

e result — defines success of
folder deletion.

e successCallback — Itisa
method called on the success of
plug-in.

e errorCallback — It is a method
called in case of error caused in
the plug-in.

e Bar-Code Extraction — This plug-in enables bar code extraction operation for
extracting bar-code data from camera.

Description and

Method name Returns
Parameter
NGBarcodeExtractionManager.read This method will barcode data
Barcode(successCallback, errorCallback) read the barcode.
Parameters:

e successCallback
—ltisa
method called
on the success
of plug-in.

e errorCallback —
It is a method
called in case of
error caused in
the plug-in.

e Canvas — This plug-in is used for manual drawing operation on canvas.

Version: 6.1 NEMF Developer Guide 60

Method name

NGCanvasManager.drawOnCanvas
(successCallback, errorCallback,
quality)

Framework components at high level

Description and Parameter

This method will open a canvas to
draw and allow signing on the
canvas.

Parameters:

e successCallback — Itis a
method called on the success
of plug-in.

e errorCallback — It is a method
called in case of error caused
in the plug-in.

e quality — This parameter
defines quality of image.

Returns

outlmag:
snapshot of
the signature.

e Custom Camera — This plug-in is used to capture image in a desired resolution
parameters. It will launch a camera with the nearest target resolution.

Version: 6.1

NEMF Developer Guide

ol

Method name

Framework components at high level

Description and

Parameter

Returns

NGCustomCameraManager.capturelmageUsing
CustomCamera(parameters, successCallback,
errorCallback)

This method is used for
capturing the image
with desired resolution.
Parameters:

e parameters — It is
JSON that contains

o height —
Targeted
height of the
image.

owidth —
Targeted
width of the
image.

o quality —
Targeted
quality of the
image.

o autoFocus —
Targeted
focus of the
image.

e successCallback —
It is a method
called on the
success of plug-in.

e errorCallback — It
is a method called
in case of error
caused in the plug-
in.

File path of
a captured
image
captured
with
nearest
target
resolution.

* File Storage Manager — This plug-in is used for file storage operations with the
file system (set, get, delete, and more).

Version: 6.1

NEMF Developer Guide

62

Method name

Framework components at high level

Description and

Parameter

Returns

NGFileStorageManager.setDatalnFile
System(key, value)

This method will set data
in the File system.
Parameters:

e key — It is the key
corresponding to
which the datais to
be set.

e value — It is the data
which is to be set.

Void

NCFileStorageManager.getDataFromFile
System(key, successCallback)

This method will fetch
data from the File system.
Parameters:

e key — It is the key
corresponding to
which the datais to
be fetched.

e successCallback — It
is a method called on
the success of plug-
in.

Value
corresponding
to key passed

NCFileStorageManager.setTTLForData
(key, successCallback)

This method will set the
time for which the key
shall remain in the File
system.
Parameters:
e key — It is the key
whose lifetime is set.
e successCallback — It
is a method called on
the success of plug-
in.

Void

Version: 6.1 NEMF Developer Guide

63

Method name

Framework components at high level

Description and

Parameter

Returns

NCFileStorageManager.deleteDataFrom This method will delete Success or
FileSystem(key, successCallback) key from the File system. Error according
Parameters: to file found
o key — It is the key and deleted.
which is to be
deleted.
e successCallback — It
is a method called on
the success of plug-
in.
NCFileStorageManager.deleteFolderFrom | This method will delete Void

FileSystem(successCallback,
errorCallback)

the specified folder from
the File system.
Parameters:

e successCallback — It
is a method called on
the success of plug-
in.

e errorCallback — It is
the method called
on the failure of

plug-in.

e GPS — This plug-in is used to fetch latitude, longitude and address of user's

C

Version: 6.1

urrent location.

NEMF Developer Guide

64

Method name

Framework components at high level

Description and

Parameter

Returns

NGGPSManager.requestGPSEnabling
(successCallback, errorCallback)

This method requests
the user to enable the
GPS if it is disabled.
Parameters:
e successCallback —
It is a method
called on the
success of plug-in.
e errorCallback — It
is a method called
in case of error
caused in the

plug-in.

GPS enabled or not.

NGGPSManager.checkGPSStatus
(successCallback)

This method checks
the GPS status.
Parameter:
successCallback — It is
a method called on the
success of plug-in.

True or false
according to GPS
enabled status.

Version: 6.1

NEMF Developer Guide

65

Framework components at high level

Description and

Method name Returns
Parameter
NGGPSManager.getAddressFrom This method fetches The address
Gps(latitude, longitude, successCallback, the address using the
errorCallback) longitude and latitude

of the location.
Parameters:

e latitude — The
latitude of the
location.

e longitude — The
longitude of the
location.

e successCallback —
It is a method
called on the
success of plug-in.

e errorCallback — It
is a method called
in case of error
caused in the

plug-in.
NGGPSManager.getlLocationMap This method gets the Map of the location
FromGps(latitude, longitude, map of the location
successCallback) using the latitude and
longitude.
Parameters:

e latitude — The
latitude of the
location.

e longitude — The
longitude of the
location.

e successCallback —
It is a method
called on the
success of plug-in.

Version: 6.1 NEMF Developer Guide 66

Framework components at high level

Description and

Method name Returns
Parameter
NGGPSManager.checkGPSPermission This method checks True or false
Status(successCallback) the GPS permission according to GPS
status for the app. permission status.
Parameter:

successCallback — It is
a method called on the
success of plug-in.

* Image Processing — This plug-in contains all image processing operations,
which are performed on a camera-captured image.

Method name Description and Parameter Returns
NGImageProcessingManager. | This method will automatically | Returns defocus defect
isDefocus identify any defocus defect status.
Detected(image, present in the mobile captured
successCallback, image.
errorCallback, quality) Parameters:

e image — base64 data of
mobile captured image.

e successCallback —Itis a
method called on the
success of plug-in.

e errorCallback — Itis a
method called in case of
error caused in the plug-
in.

e quality — This parameter
defines quality of the
image.

Version: 6.1 NEMF Developer Guide 67

Method name

isGlare
Detected(image,
successCallback,
errorCallback, quality)

NGImageProcessingManager.

Framework components at high level

Description and Parameter

This method will automatically
identify that is there any Glare
defect present in the mobile
captured image.

Parameters:

e image — base64 data of
mobile captured image.

e successCallback —Itis a
method called on the
success of plug-in.

e errorCallback—Itis a
method called in case of
error caused in the plug-
in.

e quality — This parameter
defines quality of the
image.

Returns

Returns glare Defect
status.

Version: 6.1

NEMF Developer Guide

68

Method name

NGImageProcessingManager.

binarize

(image, option,
compressionType,
xDPI,

yDPI, TiffFileName,
successCallback,
errorCallback, quality)

Framework components at high level

Description and Parameter

This method to perform the
black and white conversion of
mobile captured image and
generate a G4 compressed Tiff
file corresponding. All different
methods of binarization can be
chosen by providing the
options

Parameters:

e image — baseb4 data of
mobile captured image
which is converted into
black and white.

e option — options for
choosing binarization
methods.

o Adaptive
Binarization

o Integral
thresholding.

e compressionType —
applied compression
(currently supported only
G4)

e XDP| — xDPI of tiff image

e yDPI — yDPI of tiff image

e TiffFileName — absolute
path of tiff image.

e successCallback —Itis a
method called on the
success of plug-in.

e errorCallback — Itis a
method called in case of
error caused in the plug-
in.

e quality — This parameter
defines the quality of the
image.

Returns

Returns path of
binarized image stored
in device memory.

Version: 6.1

NEMF Developer Guide

69

Method name

NGImageProcessingManager.
autoCrop

(image, successCallback,
errorCallback, quality)

Framework components at high level

Description and Parameter

This method will automatically
crop the document from the
mobile captured image by
using the corner of the present
document.

Parameters:

e image — baseb4 data of
mobile captured image.

e successCallback — Itis a
method called on the
success of plug-in.

e errorCallback — Itis a
method called in case of
error caused in the plug-
in.

e quality — This parameter
defines the quality of the
image.

Returns

outlmage: byte data of
cropped image;

NGlmageProcessingManager.
autoAdjust

Brightness(image,
successCallback,
errorCallback, quality)

This method will automatically
adjust the brightness of mobile
captured image and returned
as enhanced image as output.

Parameters:

e image — base64 data of
mobile captured image.

e successCallback —Itis a
method called on the
success of plug-in.

e errorCallback — Itis a
method called in case of
error caused in the plug-
in.

e Quality — This parameter
defines the quality of the
image.

Byte data of cropped
image;

Version: 6.1

NEMF Developer Guide

70

Method name

autoDetect
Corners(image,
successCallback,
errorCallback, quality)

NGImageProcessingManager.

Framework components at high level

Description and Parameter

This method will detect corners
of the image.
Parameters:

e image — baseb4 data of
mobile captured image.

e successCallback —Itis a
method called on the
success of plug-in.

e errorCallback — Itis a
method called in case of
error caused in the plug-
in.

e Quality — This parameter
defines the quality of the
image.

Returns

Corners of the image.

rotate

Image(image, angle,
successCallback,
errorCallback, quality)

NGlmageProcessingManager.

This method will rotate the
given image to the specified
angle.

Parameters:

e image — baseb4 data of
mobile captured image.

e angle — angle with which
the orientation of the
image is to be changed.

e successCallback — Itis a
method called on the
success of plug-in.

e errorCallback — Itis a
method called in case of
error caused in the plug-
in.

e Quality — This parameter
defines the quality of the
image.

outlmg: rotated image.

Version: 6.1

NEMF Developer Guide

71

Method name

NGImageProcessingManager.

convert
ColorToGrey(image,
successCallback,
errorCallback, quality)

Framework components at high level

Description and Parameter

This method will convert
colored image to grey.
Parameters:

e image — baseb4 data of
mobile captured image.

e successCallback —Itis a
method called on the
success of plug-in.

e errorCallback — Itis a
method called in case of
error caused in the plug-
in.

e Quality — This parameter
defines the quality of the
image.

Returns

GCrey image.

NGlmageProcessingManager
.convert

GreyToColor(image,
successCallback,
errorCallback, quality)

This method will covert grey
image to colored image.

Parameters:

e image — base64 data of
mobile captured image.

e successCallback —Itis a
method called on the
success of plug-in.

e errorCallback — Itis a
method called in case of
error caused in the plug-
in.

e Quality — This parameter
defines the quality of the
image.

Colored image.

Version: 6.1

NEMF Developer Guide

72

Method name

NGImageProcessingManager.

linear Equalization(image,
successCallback,
errorCallback, quality)

Framework components at high level

Description and Parameter

This method enhances the RGB
intensity of the image.
Parameters:

e image — baseb4 data of
mobile captured image.

e successCallback —Itis a
method called on the
success of plug-in.

e errorCallback — Itis a
method called in case of
error caused in the plug-
in.

e Quality — This parameter
defines the quality of the
image.

Returns

Processed image.

Version: 6.1

NEMF Developer Guide

73

Method name

NGImageProcessingManager.
median

Filter(image, filterSize,
iOption, successCallback,
errorCallback,

quality)

Framework components at high level

Description and Parameter

This method will remove noise
from the image.
Parameters:

e image — baseb4 data of
mobile captured image.

o filterSize — size of filter
window.

e {Option — option for pixel
conversion for black and
white image.

o iOption =0 — This
option will convert
some filtered white
pixel into black and
vice-versa.

o iOption =1— This
option will convert
some filtered black
pixels into white.

o iOption =2 — This
option will convert
some filtered white
pixels into black.

e successCallback —Itis a
method called on the
success of plug-in.

e errorCallback — Itis a
method called in case of
error caused in the plug-
in.

e Quality — This parameter
defines the quality of the
image.

Returns

Processed image.

Version: 6.1

NEMF Developer Guide

74

Method name

NGImageProcessing
Manager.invert
Data(image, success
Callback,
errorCallback, quality)

Framework components at high level

Description and Parameter

This method will change the
image into its negative.

Parameters:

e image — baseb4 data of
mobile captured image.

e successCallback —Itis a
method called on the
success of plug-in.

e errorCallback — Itis a
method called in case of
error caused in the plug-
in.

e quality — This parameter
defines the quality of the
image.

Returns

Negative of image.

NGlmageProcessingManager.

detect
SkewByCorners(image,
successCallback,
errorCallback, quality)

This method will identify the
skew angle of the image on the
basis of corner points of the
document present with the
image.

Parameters:

e image — base64 data of
mobile captured image.

e successCallback —Itis a
method called on the
success of plug-in.

e errorCallback — Itis a
method called in case of
error caused in the plug-
in.

e quality — This parameter
defines the quality of the
image.

Angle: skew angle of the
image.

Version: 6.1

NEMF Developer Guide

75

Method name

NGImageProcessingManager.

perspective
Correction(image,
iSkewOption,
successCallback,
errorCallback,

quality)

Framework components at high level

Description and Parameter

This method will perspectively
correct the image according to
the corner points of the
document.

Parameters:

e image — base64 data of
mobile captured image.

e iSkewOption — If its value
is 1than skew correction
will be performed
otherwise not.

e successCallback — Itis a
method called on the
success of plug-in.

e errorCallback — Itis a
method called in case of
error caused in the plug-
in.

e quality — This parameter
defines the quality of the
image.

Returns

outlmg: perspectively
corrected and
deskewed(if
iSkewOption =1) image.

NGImageProcessingManager.

extractZone(image,
coordinates,
successCallback,
errorCallback)

This method will extract a zone
defined in image for OCR text.

Parameters:

e image — baseb4 data of
mobile captured image.

e Coordinates —
coordinates of the zone to
be extracted.

e successCallback —Itis a
method called on the
success of plug-in.

e errorCallback — Itis a
method called in case of
error caused in the plug-
in.

Angle: skew angle of the
image.

* Media Player:
o Gallery Selection — This plug-in is used to select multiple images from the

Version: 6.1

gallery.

NEMF Developer Guide

76

Framework components at high level

> Media Player — This plug-in is used to play audio and video files.

Method name

NGMediaManager.

Description and Parameter

This method invokes gallery for the

Returns

The array of

e audio to be played.
e type — It is the format of fileBase64.

invokeGallery selection of image. baseb4 data
(successCallback, Parameters: of the images
errorCallback, quality) e successCallback — It is a method selected.
called on the success of plug-in.
e errorCallback — It is a method called
in case of error caused in the plug-in.
e quality — This parameter defines the
quality of the images.
NGMediaManager. This method plays the audio file. Success or
playAudioFile Parameters: Error while
(fileBase64, type) o fileBase64 — It is the base64 data of running the
the audio.

NGCMediaManager.
playVideoFile
(fileBaseb4, type)

This method plays the video file.
Parameters:
o fileBase64 — It is the baseb4 data of
the
e audio to be played.
e type — It is the format of fileBase64.

Success or
Error while
running the
audio.

e SMS — This plug-in is used to send text messages.

Method name

NGCSMSManager.sendSms
(smsDetailsJson,
successCallback,
errorCallback)

Version: 6.1

Description and Parameter

This method will send Status
message to the specified

contact number.
Parameters:

e smsDetailsJson — JSON
is used to retrieve data
used in the plug-in.

e receiverNumber — the
contact number to
which the message is to
be sent.body- the

NEMF Developer Guide

Returns

77

Framework components at high level

Method name Description and Parameter Returns

message content or the
data to be sent.

e smsText — the message
body which is to be sent.

e successCallback — Itis a
method called on the
success of plug-in.

e errorCallback — Itis a
method called in case of
error caused in the plug-
in.

e Spinner — This plug-in is used to show and hide spinner.

Method name Description and Parameter Returns
Spinner.showSpinner(title, This method will show spinner dialog. | Void
message, isFixed) Parameters:

e title — title of the dialog.

e Message — message to be
displayed in the dialog.

e isFixed —If value is 'isFixed', the
spinner does not appear as a
pop up and hides only when
hideSpinner is called.

Spinner.hideSpinner() This method will dismiss and hide the | Void

spinner dialog.

* SQLITE Manager — This plug-in is used for file storage operations with the
SQLITE.

Version: 6.1 NEMF Developer Guide 78

Method name

Description and

Parameter

Returns

Framework components at high level

NGSqliteManager.createSQLTable
(successCallback, errorCallback)

This method will create
the SQL table if it does
not exist.
Parameters:
e successCallback —
It is a method
called on the
success of plug-in.
e errorCallback — It
is a method called
in case of error
caused in the

plug-in.

True if table
created

successfully.

NGSqgliteManager.setDatalnSqglTable
(dataKey, dataValue, successCallback,
errorCallback)

This method will set
data in the SQL Table.
Parameters:

e dataKey — It is the
key corresponding
to which the data
is to be set.

e dataValue — It is
the data which is
to be set.

e successCallback —
It is a method
called on the
success of plug-in.

e errorCallback — It
is a method called
in case of error
caused in the

plug-in.

Success if
data set.

Version: 6.1 NEMF Developer Guide

79

Framework components at high level

Method name

Description and

Parameter

Returns

NGSqliteManager.getDataFromSqglTable(dataKey,
successCallback, errorCallback)

This method will fetch
data from the SQL
table.

Parameters:

e dataKey — It is the
key corresponding
to which the data
is to be fetched.

e successCallback —
It is a method
called on the
success of plug-in.

e errorCallback — It
is a method called
in case of error
caused in the

plug-in.

The data
value

NGSqliteManager.deleteKeyFromTable(dataKey,
successCallback, errorCallback)

This method will delete
key from SQL table.
Parameters:

e dataKey — It is the
key which is to be
deleted.

e successCallback —
It is a method
called on the
success of plug-in.

e errorCallback — It
is a method called
in case of error
caused in the

plug-in.

Success if
key deleted.

* WIFI-Printer — This plug-in is used to print data via wifi printer (only for android).

Method name

Description and Parameter Returns

NGWifiPrinterManager.printDocument
(data, printerType)

This method will print the
data sent.

Parameters:

Version: 6.1 NEMF Developer Guide

status

80

Framework components at high level

Method name Description and Parameter Returns
e data — data to be

printed.
e printerType — the type
of printer used.

e Zone Extraction — This plug-in is used for extracting a particular part of the
captured image.

Method name Description and Parameter Returns
NGZoneExtractionManager. This method will allow drawing a Map of the
drawZoneOn zone on the canvas. coordinates.
Capturedimage Parameters:

(successCallback, e successCallback — It is a
errorCallback, quality) method called on the success
of plug-in.

e errorCallback — It is a method
called in case of error caused in
the plug-in.

e quality — This parameter
defines the quality of the

image.
NGZoneExtractionManager. This method will capture the image outlmag:
extractZone and allow performing a sequence of | cropped image
Capturedlmage imaging operations on the captured | with respect to
(successCallback, image. the coordinate
errorCallback, Parameters: map.
immgData, coordinateZone, e successCallback — It is a
quality) method called on the success

of plug-in.

e errorCallback — It is a method
called in case of error caused in
the plug-in.

e imgData — byte data of mobile
captured image.

e coordinateZone — map of
coordinates to be extracted
from image.

e Quality — This parameter
defines the quality of the
image.

Version: 6.1 NEMF Developer Guide 81

Method name

NGZoneExtractionManager.
extractZone
FromImage(quality,
successCallback,
errorCallback)

Framework components at high level

Description and Parameter

This method will capture the image
and allow drawing zone on captured
image.

Parameters:

e Quality — This parameter
defines the quality of the
image.

e successCallback — It is a
method called on the success
of plug-in.

e errorCallback — It is a method
called in case of error caused in
the plug-in.

Returns

Extracted
baseb4 image
data.

NGZoneExtractionManager.
extractZone
FromlimageData(imageBaseb64,
quality,

successCallback,

errorCallback)

This method will take the base64
data of an image and allow drawing
zone on the image.

Parameters:

e imageBase64 — Baseb4 data
of the image on which zone is
to be drawn.

e Quality — This parameter
defines the quality of the
image.

e successCallback — It is a
method called on the success
of plug-in.

e errorCallback — It is a method
called in case of error caused in
the plug-in.

Extracted
base64 image
data.

* FingerPrint Login:

Version: 6.1

NEMF Developer Guide

82

Framework components at high level

APIls name Description and Parameter Returns
NGBUCAsyncUtils. This method will update the business use Void
updateBUCInstance case instance in the defined tray.
(buclnstance,trayArray, Parameters:
callback) e buclnstance — An object of type

NGBusinessUseCase
e trayArray — array of trays
e callback — callback method to return
the result.
NGBUCAsyncUtils. This method updates a new Ul of the Void
updateWhitelabelinglnfo application.
(whitelLabelingConfi) Parameter:
whitelLabelingConfig — Boolean value for
processing whitelLabelingConfiguration.
NGBUCAsyncUtils. This method updates the application if any Void
updateBUCTemplate change is made in BucTemplate at the
(bucTemplateconfiguration) server side.
Parameter:
bucTemplateconfiguration — XML which
contains new BucTemplate on the server-
side.
Method name Description and Parameter Returns

NGFingerPrintManager. | This method is used to check whether

checkAvailability: fingerprint hardware is present in the
(successCallback, device or not.
errorCaIIbaCk) Parameters:

e successCallback — It is a method
called on the success of plug-in.

e errorCallback — It is a method
called in case of error caused in the

plug-in.

Returns a string
“Available” or “No
hardware detected”.

Version: 6.1

NEMF Developer Guide

83

Method name

NGFingerPrintManager.

registerFingerprint:
(successCallback,
errorCallback)

Framework components at high level

Description and Parameter

This method is used to register the user
fingerprint first time the after successful
login.
Parameters:
e successCallback — It is a method
called on the success of plug-in.
e errorCallback — It is a method
called in case of error caused in the

plug-in.

Returns

Returns a string
“Fingerprint
Registered”

if successfully
registered.

NGFingerPrintManager.

verifyFingerprint:
(successCallback,
errorCallback)

This method is used to verify the user
fingerprint.
Parameters:
e successCallback — It is a method
called on the success of plug-in.
e errorCallback — It is a method
called in case of error caused in the

plug-in.

Returns a string
“Fingerprint Verified”
if successfully verified.

NGFingerPrintManager.

saveCredentials:
(savedUserName,
savedPassword,
successCallback,
errorCallback)

This method is used to save user name
and password after successfully
registering the fingerprint.
Parameters:
e savedUserName — username to
save
e savedPassword — user password to
save.
e successCallback — It is a method
called on the success of plug-in.
e errorCallback — It is a method
called in case of error caused in the

plug-in.

Returns success
if successfully saved.

NGFingerPrintManager.

fetchCredentials:
(successCallback,
errorCallback)

This method is used to fetch username
and password after successful
verification.
Parameters:
e successCallback — It is a method
called on the success of plug-in.
e errorCallback — It is a method
called in case of error caused in the
plug-in.

Returns a json object
with saved
UserName,

saved Password.

Version: 6.1

NEMF Developer Guide

84

* DocScan Plugin:

Method name

NGDocScan.scanDocs :
(parameters,
successCallback, errorCallback)

Framework components at high level

Description and Parameter

This method is used to capture multiple
images at once and performing image
operations on them.

Parameters:

e parameters — It is a JSON to modify
image attributes that contains

o height — Targeted height of
the image.

o width — Targeted width of the
image.

o quality — Targeted quality of
the image.

o autoFocus — Targeted focus of
the image.

o doPerspectiveCorrection —
whether or not to do
perspective correction after
image is clicked.

o totalNoOflmages — total no of
images to be clicked with
camera at once.

[]

e successCallback — It is a method
called on the success of plug-in.

e errorCallback — It is a method called
in case of error caused in the plug-in.

Returns

Returns
array of
paths of
images
clicked.

* File Explorer:

Version: 6.1

Method name

NGFileExplorer.importFile:
(docType, successCallback,
errorCallback)

Description and Parameter

Returns

This method is used to import all Returns the
type of files from the file system. path of file

Parameters: selected from

o docType — type of document | file system.

to be imported.

e successCallback — Itis a
method called on the success
of plug-in.

NEMF Developer Guide

85

Method name

Framework components at high level

Description and Parameter Returns

e errorCallback — It is a method
called in case of error caused
in the plug-in.

 Location Spoofing:

Method name Description and Parameter Returns
NGLocationSpoofingChecker.is | This method is used to check if | Returns a JSON
LocationSpoofed : the device location is being object with latitude
(successCallback, spoofed or not. and longitude if
errorCallback) Parameters: location is not

spoofed else it will
give that location is

e successCallback — It is a
method called on the

success of plug-in. spoofed.
e errorCallback — Itisa
method called in case of
error caused in the plug-
in.
e Push Notification:

Method name Description and Parameter Returns
NGPushNotificationManager. This method is used to register a device Returns a
registerApp on FCM server and gets a push token. json object
ForPushNotifications: Parameters: with push

(successCallback,
errorCallback)

e successCallback — It is a method token.

called on the success of plug-in.
e errorCallback — It is a method
called in case of error caused in the

plug-in.

Version: 6.1

NEMF Developer Guide

Framework components at high level

Method name Description and Parameter Returns
NGPushNotificationManager. This is the event handler that executes Returns a
onWindowsPushNotification: whenever a windows push notification is | JISON
(successCallback, received. This handler takes out the object with
errorCallback) custom Message from the notification push token.

and displays it in the tile.
Parameter:
Evt — The javascript notification event
object
NGPushNotificationManager. This method is called from native side. It | Return: NA

onMessage : (pluginMessage)

gets the message from push notification
and sends it to Javascript.

Parameter:

pluginMessage — JSON returned from
the server of a synchronous call.

* Media Splitter:

Version: 6.1

NEMF Developer Guide

87

Method name

NGMediaSplitterPlugin.getTotalParts:
(filePath, fileName, fileTempPath,
attachmentType, chunkSize, userld,
isAttachmentEncrypted, successCallback,
errorCallback)

Framework components at high level

Description and Parameter

This method is used to get the
total number of parts an
attachment will be divided into
according to chunk size for
submission.

Parameters:

e filePath — The folder path
where the attachment data
is saved.

e fileName — The name of
the attachment file.

e fileTempPath — The name
of the temporary folder
where the attachment file is
saved (in case the BUC is
created from the older
approach)

e attachmentType — The type
of attachment
(base64EncodedData/
baseoc4TiffData)

e chunkSize — The size of
each part that the file needs
to be divided into.

e userld

e isAttachmentEncrypted —
Whether the attachment is
encrypted or not.

[]

e successCallback — Itis a
method called on the
success of plug-in.

e errorCallback — Itis a
method called in case of
error caused in the plug-in.

Returns

Returns
ajson
object
with
push
token.

Version: 6.1 NEMF Developer Guide

88

Method name

NCMediaSplitterPlugin .splitFilesintoParts:
(fileName, fileTempPath, partindex,
chunkSize, fileReferenceName,
folderName, isAttachmentEncrypted,
successCallback, errorCallback)

Framework components at high level

Description and Parameter

This method is used to split a file
into chunk size parts for transfer
to server.

Parameters:

e fileName — The name of
the file to split into parts

e fileTempPath — The name
of the temporary folder
where the attachment file is
saved (in case the BUC is
created from the older
approach)

e partindex — The index of
the part to be received

e chunkSize — The size of
each part that the file needs
to be divided into.

o fileReferenceName — The
fileReferenceName
returned from
getTotalParts()

e folderName — The folder
name where the
attachment is saved

e isAttachmentEncrypted —
Whether the attachment is
encrypted or not.

e successCallback —lItis a
method called on the
success of plug-in.

e errorCallback —Itis a
method called in case of
error caused in the plug-in.

Returns

Returns
a JSON
object
with
push
token.

Version: 6.1 NEMF Developer Guide

89

Method name

NGCMediaSplitterPlugin .deleteFile:
(fileTempPath, filename, successCallback,
errorCallback)

Framework components at high level

Description and Parameter

This method deletes the
temporary file created for
transfer after transfer is
successful.

Parameters:

e fileTempPath — The name
of the temporary folder

where the attachment file is

saved (in case the BUC is
created from the older
approach)

e fileName — The name of
the file to be deleted

e successCallback — Itis a
method called on the
success of plug-in.

e errorCallback — Itis a
method called in case of
error caused in the plug-in.

Returns

Return:
NA

Version: 6.1

NEMF Developer Guide

90

Method name

NCMediaSplitterPlugin.mergeData
(tempFilePath, fileName, startindex,
partData, successCallback, errorCallback)

Framework components at high level

Description and Parameter

This method merges parts of a
file to make one single file.

Parameters:

e tempFilePath — The name
of the temporary folder
where the attachment file is
saved (in case the BUC is
created from the older
approach)

e fileName — The name of
the file whose data is being
merged

e startindex — The starting
index of the part which is to
be written

e partData — The data to be
written.

e successCallback — Itis a
method called on the
success of plug-in.

e errorCallback — Itis a
method called in case of
error caused in the plug-in.

Returns

NCMediaSplitterPlugin.getBase64Data
(tempFilePath, fileName, successCallback,
errorCallback)

This method returns the basec4
data of a file.

Parameters:

e tempFilePath — The name
of the temporary folder
where the attachment file is
saved (in case the BUC is
created from the older
approach)

e fileName — The name of
the file.

e successCallback — Itis a
method called on the
success of plug-in.

e errorCallback — Itis a
method called in case of
error caused in the plug-in.

Version: 6.1 NEMF Developer Guide

91

Framework components at high level

* MRZ Scanner: User can scan passport MRZ lines to get the passport details filled
in the form. There are three ways by which passport can be scanned:

> Scan MRZ with Camera — In this passport can be scanned by placing in
front of camera so that MRZ data could be read by its library.
o Capture with Camera — In this image of passport needs to be taken by
camera so that MRZ data could be read by its library.
o Import with File Explorer — In this image of passport needs to be uploaded
from file explorer so that MRZ data could be read by its library.

Following public methods are available for use in MRZ Scanner:

Method name Description and Parameter Returns
readText This method is used to initialize the library and It returns a
(String imagePath, String read the MRZ o!ata frqm MRZ line when image String
language, BOOL isCropRequired, of passport is either clicked by camera or taken | value
BOOL from file explorer. which is
isExtractedTextPreviewRequired) | Parameters: the .

e imagePath(String) — path from where recognized
image is to be picked to read data. text got by
e language(String) — language with which | Performing
OCR is to be performed on passport. OCRon
e isCropRequired(BOOL) — Bool value the image
which tells whether the image that is of
captured for performing OCR needs to be | Passport.
cropped for selection of OCR zone or not.
e isExtractedTextPreviewRequired(BOOL) —
Bool value which tells whether user wants
to see the extracted data from the image
on which OCR is to be performed or not.
scanMRZ This method is used to initialize the library and It returns a
read the MRZ data fromm MRZ line when user string
want to scan the passport. value
which is
the
recognized
text got by
performing
OCRoON
the image
of
passport.
Version: 6.1 NEMF Developer Guide 92

Framework components at high level

When scanning the passport with scanner, text received from scanning a
particular frame gets validated with the Regex Pattern available in the
MRZRegex.json then scanner stops and string gets parsed to fill data in form else
the scanner keeps on scanning to get the validated data.

MRZRegex.json can be customised but it has to be in a certain format which is as
below:

"mrzNoOfLines": 2,
"regex": [{
"countOfPredefinedCharacters": 5,
"separator": "##",
"lineRegex": "(P[A-Z@-9<1{1})([A-Z1{3})([A-Z@-9<]1{##})"

h
{
"countOfPredefinedCharacters": 28,
"separator": "##",
"lineRegex":
"([A-20-9<1{9}) ([@0-91{1}) ([A-Z]1{3})([0-91{6}) ([@-91{1}) ([M|F|X|<1{1})([0-91{6})(
[0-91{1}) ([A-Z@-9<]1{##})"

Below is the details for each values in the JSON used above:

e rzNoOfLines — Number of MRZ data lines in passport.

* regex — Array of rules for each line

e countOfPredefinedCharacters — Each passport has some predefined characters
and some characters that can vary from each passport to other passport. It is
basically the user data that can vary. So while defining rules we need to define
what is the number of predefined characters.

e seperator — It is the symbol which would be replaced with a number in the line
regex.

* lineRegex — It is the regex of the particular line in passport with ## replaced
with number of characters that can vary.

External JS Loading Support

This file contains a method to load scripts dynamically. This takes a parameter as a
string variable that contains the path of the script to be loaded. The path must start
from scripts folder and the extension must also be added to the parameter. (ng-
custom-script-loader.js)

Method name Description and Parameter Returns
NGCustomScriptLoader.loadScript(path) This method loads the script.

Method name

Framework components at high level

Description and Parameter Returns
Parameter:

path — path of the script to be
loaded.

Version: 6.1

NEMF Developer Guide 94

Writing solutions over NEMF

Writing solutions over NEMF

The following sections explain how to write the solution on the server and client-side
over NEMF.

Server side

This section provides information on writing solutions on the server side.

Defining server interface (abstractions)

Specify the business requirements that the solution needs to meet at a high level and
identify all the transactions in it. Next, identify all the entities (Objects) that are seen to
be taking part in each of those transactions. [Entities are usually identified within
Nouns used in the requirements text].

Identify entity relationships to create the ER model. All newly designed entities should
extend from the Resource class.

Convert the identified high-level transactions into service methods. The method
signature must perform I/O in terms of the entities that have been observed to
participate in those transactions.

The set of method signatures, thus identified, serve as good abstractions around the
business requirement of that particular nature.

All such abstractions need to be extended ‘AbstractedFunctionality’ interface.

Public interface IdentityProvider extends AbstractedFunctionality({
Public User authenticate (User user) throws Exception;
public User logout ()throws Exception;

Version: 6.1 NEMF Developer Guide

95

Writing solutions over NEMF

Writing concrete implementations

Concrete implementations need to implement the abstractions defined above.

public class MyLogin implements IdentityProvider {

@Override

Public User authenticate (User user)throws Exception{
//TODO AutO-generated method stub

LogMe.logMe (LogMe.LOG LEVEL DEBUG, "Inside authenticate");
Person toReturn = new Person|() ;

if (user == null) {

throw new Exception ("user cannot be null");

}

Return toReturn;//The user will be returned to the client as
JSON, synchronously

}

@Override
Public void saveOrUpdateUser (User user)throws Exception({
//Throw exceptions if it does not make sense to implement

//an abstracted method. Exceptions will be returned to client
//as JSON.

throw new Exception ("api not supported") ;

}

Pushing data to the client asynchronously

If solution writers need to push data to clients asynchronously, then in the concrete

implementations, they need to set targets and then add to the device queue. Potential
targets can be Users, Devices, and Role and Groups.

//constructing new response and route them asynchronously.
APIResponse response = new APIResponse() ;

response.setMode (APIResponse.MODE ASYNCHRONOUS) ;
response.setResponseState (APIResponse.RESPONSE CREATED) ;

Writing solutions over NEMF

response.setOrganization (response.getOrganization()); // mandatory to be set

//creating target user
User user = new User();//Or, search for an existing user
user.setUserName ("lal.chandra") ;

//setting the targets for response
response.setTargetDevice (user) ;

//adding the response to deviceQueue
DeviceQueue.addToQueue (response) ;

How the solution can choose to delay a
response

Sometimes, a solution is not in a position to return a response immediately
(synchronously or asynchronously) because enough information to construct a
response is not at hand (For example: maybe the required information is expected over
a call back from a third party before a suitable response can be constructed). In this
case, the solution may want to indicate to the core to inform the client that the
response will be delivered later, asynchronously. Below are the steps to do it:

QOverride
Public PaymentDetails getPaymentDetails (Orderorder)throws Exception{

//Indicate to the core that the response cannot be returned immediately.
Throw new DelayedResponseNotificationException ("response will be delayed") ;

}

When DelayedResponseNotificationException is received by the core, it immediately
puts the original APIRequest to the ‘REQUEST_RESPONSE_DEFERRED’ state but a
response is returned to the client informing the correlation ID against which it can
expect the actual response to arrive at a later time.

Later on, when the solution gets enough information (through a call back from third
party), it can search for the deferred request, and check the correlation ID.

Version: 6.1 NEMF Developer Guide 97

Writing solutions over NEMF

//Construct the response
APIResponse response=..;

// identify the user for whom the request was deferred earlier
User user=..;// search for this user in solution specific way

// find deferred requests

List

<APIRequest> matchingRequests =
GenericUtils.findResourceCarrierDeferredRequests
(user) ;

if (matchingRequests == null ||
matchingRequests.size () == 0) {
throw new Exception ("no matching requests found..cant set correlationID");

}

// select the first one
APIRequest request = (APIRequest)matchingRequests.toArray() [0];
// set correlation ID and replace the old response with this new one
APIResponse earlierResponse = request.getApiResponse () ;
if (earlierResponse == null) {
throw new Exception("no earlier response found matching request.. can't set

correlation ID");

}

response.setCorrelationID (earlierResponse.getCorrelationID()) ;
request.setApiResponse (response); // discard the old response
request.saveOrUpdate () ;

// add the response to deviceQueue
DeviceQueue.addToQueue (response) ;

Developing solution Plug-in

This section describes how to develop a solution plug-in.

Implementing a Solutioninterface

Below is an example that illustrates how to implement the methods of the solution

interface.

Version: 6.1 NEMF Developer Guide 98

Writing solutions over NEMF

public class IdentityProviderPlugin implements SolutionInterface{
/*
* Core will call this method to get the list of all configurables

* in a solution
* Some of these Configurables may be ContextBuilders as well.
* These will be recorded in the APIContext.
* Whenever a configuration is loaded, it is checked whether
* it is a ContextBuilder. If yes, it's buildContext method will
* be called.
* 1f it 1s savable, it is saved.
=
@Override

public List
<Configurable> getConfigurables () throws Exception ({
// TODO Auto-generated method stub
new IdentityProviderFactory():;

Configurable factory
ArrayList
<Configurable> configurables
<Configurable> () ;
configurables.add (factory) ;

new ArrayList

return configurables;

Core will record the solution event handlers in the api context
and will
use them to deliver events generated in the core back to

L .

the solutions.
* Method will be called from APIEngine.initialize ()
=/
@Override
public List
<SolutionEventHandler> getSolutionEventHandlers ()
throws Exception {
// TODO Auto-generated method stub
ArrayList toReturn = new ArrayList();

toReturn.add (Class.forName ("com.newgen.mcap.social.facebook.concrete.Face
bookCallBackHandler") .newInstance()) ;

//add some more social event handlers if there are any
return toReturn;
}
@Override
public String getSolutionVersion () throws Exception {
// TODO Auto-generated method stub
return MobileCaptureConstants.SOLUTION VERSION;

Version: 6.1 NEMF Developer Guide

99

Writing solutions over NEMF

Implementing and exposing factory

public class IdentityProviderFactory extends Factory {

Milliseconds after which the configuration should be reloaded by core.
If -1 is returned then the configuration will not be attempted
to be reloaded by core. Usually core will reload only when
configuration files have changed, but if this is specified

* then this will take precedence.

*/

// This method is not used by core at the moment

@Override

public int configurationRefreshInterval () throws Exception {

// TODO Auto-generated method stub

return 0;

* % ok X N

}
/*

* A configuration may not be intended to be saved to Datastore, if so
* return 'false'

*/

@Override

public boolean isConfigurationSaveable () throws Exception {
// TODO Auto-—-—generated method stub
return false;

—

*

Whether propagation to devices required

If yes, then core will first try to send the Configurable
returned by buildConfigurabledJSON method. If it returns
null then this object itself will be sent to the device.
This gives opportunity to the solution to send only the
required pieces of the configuration to the device.

If it is then core will propagate it first time as well

b S S S R

*

as after every change or reload of configuration.

v

@Override

public boolean isPropogationToDevicesRequired() throws Exception {
// TODO Auto-generated method stub
return false;

}

/%

* Directly checks the classpath for availability of xml file

* and builds the Configuration object.

*/

QOverride

Version: 6.1 NEMF Developer Guide 100

Writing solutions over NEMF

public Configuration loadConfigurationFromXML () throws Exception {
// TODO Auto-—-—generated method stub
InputStream inputStream = null;
Configuration toReturn = null;
try {
inputStream =
this.getClass () .getClassLoader () .getResourceAsStream (

MobileCaptureConstants.ESSENTIAL IDENTITY PROVIDER CONFIG FILE) ;

configuration = GenericUtils.getConfigurationFromInputStream (inputStream) ;
} catch (Exception e) {
// TODO: handle exception
e.printStackTrace () ;
} finally {
if (inputStream != null) {
inputStream.close () ;
inputStream = null;

}

return configuration;

}
/*

* XML is passed as parameter
*/
@Override
public Configuration loadConfigurationFromXML (String xmlString)
throws Exception {
// TODO Auto-generated method stub
InputStream inputStream = null;
Configuration toReturn = null;

return toReturn;

/*
* The list will return a list containing User (s),
* Devices(s) or Role(s) or Group(s). The

* Configuration will be pushed to all
* the listed Destinations (if

* isPropogationToDevicesRequired() returns

* true) .

*

& If null or empty arrayList is returned then

& Configuration will be sent to all.

*

*/

@Override

public ArraylList targetDestinations () throws Exception {

Version: 6.1 NEMF Developer Guide

101

Writing solutions over NEMF

// TODO Auto-generated method stub
return null;

* Get the list of Saveables built from this Configuration
* If 'isConfigurationSaveable' returns true then
* all the Saveables that are returned from this list will be
* Saved in data store.
*
* Also, the core will check if the Configurable itself is a
* Saveable and if yes, save it too.
*/
@Override
public ArrayList
<Saveable> getSaveablesBuiltFromConfiguration ()
throws Exception ({
// TODO Auto-generated method stub
return null;

/*

* generates the check-sum of xml file so that it can be checked

* for changes and can be re-loaded.

=

@Override

public String generateCheckSumForXML () throws Exception {
String toReturn = null;

InputStream inputStream = null;
try {
inputStream = this
.getClass ()
.getClassLoader ()

.getResourceAsStream (

MobileCaptureConstants.ESSENTIAL IDENTITY PROVIDER CONFIG FILE);

toReturn = GenericUtils.generateSHAlChecksum (inputStream) ;

} catch (Exception e) {
e.printStackTrace () ;
// Logs to be added
} finally {
if (inputStream != null) {
inputStream.close () ;
inputStream = null;

}

return toReturn;

Version: 6.1 NEMF Developer Guide

102

Writing solutions over NEMF

Implementing and exposing
SolutionEventHandlers

public class FacebookCallBackHandler implements SolutionEventHandler {

@Override
public String getIdentifier () throws Exception {
// TODO Auto-generated method stub
return "facebook";
}
@Override
public String getSolutionVersion () throws Exception {
// TODO Auto-—-—generated method stub
return "1 0";

}

@Override
public void deliverEvent (CoreEvent coreEvent) throws Exception {
LogMe.logMe (LogMe.LOG LEVEL DEBUG, "Inside deliverEvent");
// TODO Auto-generated method stub
HashMap requestParameters = (HashMap)coreEvent.getEventObjects().get (1)
String authorizationCode = (String)requestParameters.get ("code") ;

Creating solutions.xml

<?xml version="1.0" encoding="UTF-8"7?>
<Solutions organizationName="Newgen">
<Category name="essentials">
<SolutionInterface

implementation="com.newgen.essentials.usermanagement.plugins.IdentityProviderPlug
in"/>
<SolutionInterface

implementation="com.newgen.essentials.templates.plugins.TemplateManagerPlugin"/>
</Category>
</Solutions>

Version: 6.1 NEMF Developer Guide 103

Writing solutions over NEMF

Sample organization.xml

<?xml version="1.0" encoding="UTF-8"?>
<Organization>
<Name>Newgen</Name>
<LogLevel>1</LogLevel>
<DataMode>direct classic</DataMode>
<!--direct classic/direct chunksOnFileSystem -->
<FileSystemPathDirectory>C:
\Users\gaurav.rohira\Desktop\gaurav classes\testing</FileSystemPathDirectory>

<!-- Optional element to create GeoFence at Organization level -—>

<!-- Can be overridden at BUC level (this element can be present at BUC level
config as well) -—>

<!-- Geofence breach event is fired from server and delivered to client via
DeviceSyncManager (push notifications) -—>

<!-- If MDM is configured and if it supports GeoFence setting then this data
will be sent to MDM as well —-—>

<!-- If GeoFence is configured at Org level then the client mandatory needs to
enable geolocation on his device. -—>

<!-- Otherwise, app won't run -—><GeoFence><Center latitude="24.67"
longitude="45.78"/><Radius value="5" units="meters"/>

<!-- units can be meters, kilometers, miles, etc -—></GeoFence>

<!-- Data Encryption settings.. Secret key used for data enc/dec at client
device as well as server end ——>

<!-- Use Java Key Tool (or java cryptography APIs (KeyStore)) to generate a

password protected key. Point to the generated key file below -->
<EncryptionManagement>
<EncryptionAlgorithm>DES</EncryptionAlgorithm>
<EncryptionKey>securityKey.file</EncryptionKey>
</EncryptionManagement>
<RetentionPolicy>
<ServerSideRetentionPeriod unit="days" value="2" />
<ClientSideRetentionPeriod unit="seconds" value="100" />
<RetentionPolicyJobFrequency unit="seconds" value="20" />
</RetentionPolicy>

<!-- <CallBackURL>https://zapinserverIP/CallbackEndPoint</CallBackURL> ——>

<!-- Keep checking if configuration has changed since last check. -—>

<!-- If yes, devices may need to be synced for configured Resources unless
prevented —-—>

<!-- A resource may be prevented from being synchronized to devices, if
'preventSynchronization' attribute is set to true —-—>

<!-- This would primarily be used to synchronize Whitelabeling, BUC & Form
configurations to devices —-—>

<!-- <ConfigurationUpdateCheck
units="minute">5</ConfigurationUpdateCheck> --><DeviceSyncConfig>

<!—— pushMethod can be set as 'thirdParty' (default) or
'directChannel' -—>

Lll== If 'thirdParty' is set then ... -—>

<! —- if MDM configuration supports push notification (i.e. if

Version: 6.1 NEMF Developer Guide 104

Writing solutions over NEMF

MobileDeviceManager.pushNotificationToSelectedDevices () does not throw Exception),
it will be used ——>

== otherwise GSM (and Apple and Windows equivalent of it)-—>

Kl== notification services are used —-—>

== If 'directChannel' is configured then server will keep an always
on connection -—>

== with each connected device through which it can push data to it. -—-—
>

<l== If directChannel is configured but not possible to be created
(device offline mode) then -—>

Ll == Fall back to thirdParty mode -—><Key
name="pushMethod">directChannel</Key><Key name="healthSignalDuration">5000</Key>

<!-- milliseconds.. (heartbeat) to be used for directChannel mode only --><Key
name="connectionRefreshlDuration">30</Key>

<!-- minutes.. to be used for directChannel mode only -—><Key
name="pushByPartsTriggerSize">60005</Key>

<!-- push will begin by parts, if the trigger size is breached. --><Key
name="pushByPartsTriggerSizeUnits">kilobytes</Key>

<!-- bytes, kilobytes, megabytes. -—-><Key name="pushByPartsSize">60000</Key>

<!-- the size of JSON carried in push notification for each part push. —-—><Key
name="pushByPartsSizeUnits">kilobytes</Key>

<!-- bytes, kilobytes, megabytes. -—></
DeviceSyncConfig><SchedulerConfiguration>

<!-— minimum time required on the basis of lowestHitTimestamp of all
corresponding multipart requests -->

<Key name="MinimumWaitingTimeForMultiParts-TimeInterval">50000</Key>

<!-- milliseconds -->
</SchedulerConfiguration>
<!-- Cloud level API config can be overridden at Organization level unless

override 1is prevented by organizationOverrideDisabled attribute --
><APIConfiguration><Pagination enabled="true">

<!-- False by default -—><Key name="recordPerPage">10</Key><Key
name="1listSessionAge">120000000</Key>
<!-- milliseconds --></Pagination><CallRestrictions><Call name="IdentityProvider|

default|authenticateDevice"><Permissions><Permission name="canMakeCall" ><Union>
<!-- —-—><AllowedUsers><UserReference

search=""/>

<!-- All users matching search criteria will be allowed. Wildcards allowed in
values // mandatory. Multiple are allowed.-—></
AllowedUsers><AllowedGroups><GroupReference

search=""/>

<!-- All groups matching search criteria will be allowed. Wildcards allowed in
values // mandatory. Multiple are allowed.-—></AllowedGroups></
Union><Intersection><AllowedRoles><RoleReference

search=""/>

<!-- All roles matching search criteria will be allowed. Wildcards allowed in
values // mandatory. Multiple are allowed.-—></
AllowedRoles><AllowedDevices><DeviceReference

search=""/>
<!--// Since wildcards are allowed, you may configure a BUC to be loaded by any
random device as well with 'deviceId=*' (a requirement in the specs)-—></

Version: 6.1 NEMF Developer Guide 105

Writing solutions over NEMF

AllowedDevices></Intersection>

<!--Tf none of AllowedUsers, AllowedGroups, AllowedDevices, and AllowedRoles are
present then all are allowed —-—></Permission></Permissions></Call></
CallRestrictions></APIConfiguration><Organization>

Sample cloud.xml

<?xml version="1.0" encoding="UTF-8"?>
Lf== i. ??2?Union??? will mean that if any of the AllowedUsers OR
AllowedRoles OR ??? 1s met (from within Unioned portion),
then the BUC will be allowed.
idi. ???2Intersection??? will mean that if only when all of AllowedUsers
AND AllowedRoles AND ??? 1is met (from within
Intersectioned portion), then the BUC will be allowed.
iii. f none of ???Union??? or ???Intersection??? is specified then Union
will be assumed. Please change the configuration.
==
<CloudConfig>
<LogLevel>2</LogLevel>
<ProxyConfiguration proxy="true">
<key name="proxyHost">192.168.55.118</key>
<key name="proxyPort">8080</key>
<key name="proxyUser">sonia.wadhwa</key>
<key name="proxyPassword">xyz</key>
<key name="basicAuthenticationUser">sonia.wadhwa</key>
<key name="basicAuthenticationPassword">xyz</key>
</ProxyConfiguration>
<SchedulerConfiguration>
<Key name="ConfigurationFilesHaveChanged-TimeDelay">12000</Key><!--
milliseconds -->
<Key name="RespondToAsynchronousRequests-TimeDelay">10000</Key><!-—-
milliseconds -->
<Key name="CompleteAsynchronousRequests-TimeDelay">5000</Key><!-- milliseconds
-—>
<Key name="MissingPartNotificationJobRequests-TimeDelay">200000</Key><!—--
milliseconds —-->
</SchedulerConfiguration>
<!-- API config can be overridden at Organization level unless
organizationOverrideDisabled attribute is set to true at Cloud level (See
configuration for 'saveOrUpdateOrganization' call) -->
<APIConfiguration>
<Pagination enabled="true"><!-- False by default -->
<Key name="recordPerPage">10</Key>
<Key name="listSessionAge">120000000</Key><!-- milliseconds -->
</Pagination>

<!-- Async multi parts request mode uses the configured part size -->
<!-- triggerPoint is the size of JSON that triggers the client to begin async

Version: 6.1 NEMF Developer Guide 106

Writing solutions over NEMF

request in parts -->
<!-- attributes can be overridden at the individual API level -->
<!-- If not overridden, this will be used. -->
<!-- 'units' attribute can be bytes or kilobytes or megabytes-->

<AsyncMultiPartRequest triggerPoint="1" triggerPartUnits="megabytes"
asyncPartSize="2000" asyncPartSizeUnits="bytes"/>

<CallRestrictions>
<Call name="authenticateDevice">

<Permissions>
<Permission name="canMakeCall"><!-- If 'name' attribute is missing then all
(canView, canUpdate...) are assumed wrt contained configuration -->
<Union><!-- —-->
<AllowedUsers>
<UserReference

search="fieldl:valuel; field2:value2"/><!--All users matching search criteria will
be allowed. Wildcards allowed in values // mandatory. Multiple are allowed.-->
</AllowedUsers>
<AllowedGroups>
<GroupReference
search="fieldl:valuel;field2:value2"/><!--All groups matching search criteria will
be allowed. Wildcards allowed in values // mandatory. Multiple are allowed. -->
</AllowedGroups>
</Union>
<Intersection>
<AllowedRoles>
<RoleReference
search="fieldl:valuel;field2:value2"/><!--All roles matching search criteria will
be allowed. Wildcards allowed in values // mandatory. Multiple are allowed.-->
</AllowedRoles>
<AllowedDevices>
<DeviceReference
search="fieldl;valuel; field2:value2"/><!--// Since wildcards are allowed, you may
configure a BUC to be loaded by any random device as well with 'deviceId=*' (a
requirement in the specs)-->
</AllowedDevices>
</Intersection>
<!--TIf none of AllowedUsers, AllowedGroups, AllowedDevices
and AllowedRoles are present then all are allowed -->
</Permission>
</Permissions>
</Call>
<Call name="saveOrUpdateOrganization" organizationOverrideDisabled="true">
<Permissions/>
</Call>
<Call name="saveOrUpdateBusinessUseCase" organizationOverrideDisabled="true">
<AsyncMultiPartRequest triggerPoint="3" triggerPartUnits="megabytes"
asyncPartSize="2" asyncPartSizeUnits="kilobytes"/>
<Permissions/>

Version: 6.1 NEMF Developer Guide 107

Writing solutions over NEMF

</Call>

</CallRestrictions>

</APIConfiguration>
</CloudConfig>

REST API web app

This section provides information on the web app structure and third-party libraries.

Web app structure

This section provides information on the folder structure and Web.xml.

Folder structure

The Lib folder contains all the third-party libraries and NEMF libraries.

¥ = WebContent
b (= META-INF
¥ = WEB-INF
¥ [~ classes
|21 Cloud.xml
£y hibernate.cfg.xml
logdj.properties
|71 Organization.xml
b= ik

|1 web.xml

Web.xml

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns:xsi=http://www.w3.0rg/2001/XMLSchema-instance xmlns="http://
java.sun.com/xml/ns/javaee" xsi:schemalLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app 3 0.xsd"

id="WebApp ID" version="4.0">
<display-name>ApiEngine</display-name>
<welcome-file-list>

Version: 6.1 NEMF Developer Guide 108

Writing solutions over NEMF

<welcome-file>index.html</welcome-file>
<welcome-file>index.htm</welcome-file>
<welcome-file>index. jsp</welcome-file>
<welcome-file>default.html</welcome-file>
<welcome-file>default.htm</welcome-file>
<welcome-file>default.jsp</welcome-file>
</welcome-file-list>
<servlet>
<description>APIServlet</description>
<display-name>ApiServlet</display-name>
<servlet-name>ApiServlet</servlet—-name>
<servlet-
class>com.newgen.mcap.core.web.apiengine.concrete.ApiServlet</servlet-class>
</servlet>
<servlet-mapping>
<servlet-name>ApiServlet</servlet-name>
<url-pattern>/api/*</url-pattern>
</servlet-mapping>
<servlet>
<description>CallbackServlet</description>
<display-name>CallbackServlet</display-name>
<servlet-name>CallbackServlet</servlet-name>
<servlet-class>com.newgen.mcap.core.web.apiengine.concrete.CallbackServlet</
servlet-
class>
</servlet>
<servlet-mapping>
<servlet-name>CallbackServlet</servlet-name>
<url-pattern>/callback/*</url-pattern>
</servlet-mapping>
<servlet>
<description>DirectChannel2</description>
<servlet-name>DirectChannel2</servlet-name>
<servlet-
lass>com.newgen.mcap.core.internal.longpolling.ApiDirectChannel2</servlet-class>
</servlet>
<servlet-mapping>
<servlet-name> DirectChannel2</servlet-name>
<url-pattern>/directchannel/*</url-pattern>
</servlet-mapping>
</web-app>

Third party libraries

Following is the list of third-party libraries:

Version: 6.1 NEMF Developer Guide 109

Writing solutions over NEMF

Artifact name Artifact type License name
antlr-2.7.6jar Jar -
Apnspush.jar Jar -
atmosphere-runtime-2.1.3jar Jar Apache License, Version 2.0
bouncycastle.jar Jar MIT license
c3p0-0.9.5-pre8 jar jar -
c3p0-oracle-thin-extras-0.9.5-pre8.jar jar -
commons-beanutils-1.9.1jar Jar Apache License, Version 2.0
commons-collections-4.0.jar Jar Apache License, Version 2.0
commons-jxpath-1.3.jar Jar Apache License, Version 2.0
commons-lang-2.4.jar - -
commons-logging-1.1jar Jar Apache License, Version 2.0
dom4j-1.6.1jar Jar -
Ejbclient.jar - i,
gcme-server.jar Jar Apache License, Version 2.0
guava-16.0.1jar Jar Apache License, Version 2.0
hibernate3.jar Jar LGPL 21
hibernate-jpa-2.0-api-1.0.0.Final.jar Jar LGPL 21
hsqldb.jar Jar BSD License based
Ispack.jar - -
jackson-annotations-2.1.2 jar - -
Jackson-core-2.2.3.jar Jar Apache License, Version 2.0
jackson-databind-2.1.4jar - -
javassist-3.12.0.GA jar Jar LGPL 21

Jdtsjar

json-simple-1.1.1jar

jsonSanitizer jar

Version: 6.1

NEMF Developer Guide

10

Writing solutions over NEMF

Artifact name Artifact type License name
Jta-1.1jar Jar -
kryo.jar Jar BSD 3-Clause License
Log4j-1.2.14. jar Jar Apache License, Version 2.0
mchange-commons-java-0.2.7 jar - -
Minlog-1.2 jar Jar BSD 3-Clause License
Ngejbcallbroker.jar - -
Niplj.jar - -
Nsms.jar - -
Objenesis-1.2.jar Jar Apache License, Version 2.0
odweb.jar - -
ojdbcl4.jar Jar -
omnishared.jar - -
protobuf-java-2.4.1jar - -
quartz-all-1.6.6.jar Jar Apache License, Version 2.0
reflectasm-1.09-shaded jar Jar BSD 3-Clause License
reflections-0.9.9-RCl.jar Jar Other Open Source
sIf4j-api-1.6.1jar Jar MIT license
bouncycastle jar Jar MIT license
Sqljdbc4.jar - -
uidai-auth-client-1.6.jar Jar AUA License, ASA License
uidai-auth-proto-model-1.6.jar Jar AUA License, ASA License
uidai-auth-xsd-model-1.6.jar Jar AUA License, ASA License
uidai-biometric-integration-api-1.6.jar Jar AUA License, ASA License
uidai-sample-gui-app-1.6.jar Jar AUA License, ASA License

Version: 6.1

NEMF Developer Guide

11

Writing solutions over NEMF

Client side

Client-side can be done for both Desktops as well as Mobile devices.

0 The desktop and mobile client side will be browser-based.

The development folder structures are slightly different for both differing only at the
top levels. The part where developers need to code is essentially the same. Developers
who wish to develop desktop browser-based apps will use
NGOpenWebDesktopBase4.0 as the template project while mobile-based
development will require them to use NGOpenWebPhonegapBase4.0 as a template.

Developer will typically code within /scripts/custom/ folders
The folder structures for both are provided in the following sections:

* NGOpenWebDesktopBase4.0 folder structure
* NGCOpenWebPhonegapBase4.0 folder structure

NGOpenWebDesktopBase4.0 folder
structure

¥ = WebContent
P (= css
P (= fonts
¥ = scripts
P (= core
¥ = custom
¥ (= parameters
ng-solution-configuration-variables.js
ng-saolution-runtime-variables.js
¥ = runtime
P (= viewscripts
ng-initialize-solution.js
ng-load-view-hierarchy.js
[essentials
b [=vendors
¥ i views
R _root_view.html
G _testpage_view.html
index.html

Version: 6.1 NEMF Developer Guide 12

Writing solutions over NEMF

NGOpenWebPhonegapBase4.0 folder
structure

v G@ assets
[e
b [Socss
b [=-fonts
F=img
¥ [scripts
¥ [core
P (= entities
P (= parameters
P (= runtime
b = utils
¥ = custom
¥ = parameters
ng-solution-configuration-variables.js
ng-solution-runtime-variables.js
¥ = runtime
¥ [viewscripts
Rg- Foot-view-script.js
ng-testpage-view-script.js
ng-initialize-solution.js
ng-load-view-hierarchy.js
[essentials
P (= vendors
V¥ [views
[_root_view.html
i _testpage_view. html
i index.html

Client custom code overview

Usually, the developer develops a View hierarchy. In this hierarchy, each view has an
associated model. Let's say the name of the view is ‘root’, then it requires the developer
to code its model called ‘ng-root-view-script.js' as well as coding its HTML view

‘_root_view.html!' [See these files in the folder structures above].

In addition to this, the configuration and runtime parameters like APl endpoint details,
and more can be overridden in JS configuration files located in ../custom/parameters/

folder.

Version: 6.1 NEMF Developer Guide

13

Writing solutions over NEMF

Design HTML templates

This section provides information on designing the HTML templates.

HTML view [‘_login_view.js]

var viewMarkUp='";

viewMarkUp += '<div class="container-fluid wrapper">"';

viewMarkUp += ' <div class="row form-form">';

viewMarkUp += ' <div class="col-1g-12">"';

viewMarkUp += ' <div class="login-panel">"';

viewMarkUp += ' <div class="nemp-logo"><img src="images/nemp-logo.png"
alt="nemp-logo" /></div>";

viewMarkUp += ' <div class="login-form form-section">';

viewMarkUp += ' <form role="form">';

viewMarkUp += ' <div class="form-group">"';

viewMarkUp += ' <input type="text" class="form-element idfield
fieldValue" id="username" placeholder="{{Username}}" required/>';

viewMarkUp += ' <input type="password" class="form-element pwdfield
fieldValue" id="password" placeholder="{{Password}}" required/>';

viewMarkUp += ' </div>"';

viewMarkUp += ' <a href="#" id="forgot password" class="forgot-pwd"
style="display: none;">{{Forgot password}}? "';

viewMarkUp += ' <button type="button" class="btn-primary"
id="login">{{LOGIN} }</button>"';

viewMarkUp += ' "';

viewMarkUp += ' <button type="button" class="btn-default"

id="create profile" style="display: none;">{{CREATE PROFILE}}</button>"';
viewMarkUp += ' '";

viewMarkUp += ' </form>"';

viewMarkUp += ' </div>";

viewMarkUp += ' </div>"';

viewMarkUp += ' <div class="newgen-logo"><img src="images/newgen-logo.png"
alt="newgen-logo" /></div>";

viewMarkUp += ' </div>"';

viewMarkUp += ' </div>';

viewMarkUp += '</div>';
viewMarkUp += '<footer> © Copy rights - Newgen Enterprise Mobility Framework
</footer>"';

Preview

Version: 6.1 NEMF Developer Guide N4

Vi

Writing solutions over NEMF

= Il

Zaplin

™) ~yars sl
Password

e

Reset password

Writing solutions over NEMF

Implementing a Model [‘ng-login-view-
script.js']

/**
* File defines the Root View Loaders and Event Handlers
*/
if (typeof (jQuery) != 'function') {
if (typeof (console) != 'undefined'&& console)
console.info ("Fatal Error : jQuery is not installed yet!");
throw"jQuery not defined yet";
}
if (typeof (ngclientframework) == 'undefined')
ngclientframework = {};
if (typeof (ngclientframework.views) == 'undefined')
ngclientframework.views = {};
if (typeof (ngclientframework.views.login) == 'undefined')
ngclientframework.views.login = {
modelBuilder : function (viewObject) {
S (document) .ready (function () {
require.undef ("scripts/custom/runtime/ng-on-view-load") ;
requirejs (["scripts/custom/runtime/ng-on-view-load"], function
(util) { })s

1)
$ ("#forgot password") .click (S.proxy (function (event) {

SNGRootView.showView (' forgotPassword') ;
}, viewObject)) ;

S ("#create profile") .click ($.proxy (function (event) {

SNGRootView.showView ('createProfile') ;
}, viewObject)) ;

S("#login") .click ($.proxy (function (event) {
var tempHTML;
S(".errorLabel") .remove () ;

if (S ('#username') .val ()=="")
{
tempHTML = "
<label class='errorLabel error-alert error-alert-login'>{{Username cannot be
blank}}</label>";
tempHTML = Mustache.render (tempHTML,
SNGInternationalizationDatalInstance[viewObject.viewName]) ;

Version: 6.1 NEMF Developer Guide 16

Writing solutions over NEMF

S ('#username') .after (tempHTML) ;

if (S ('#password').val()=="")
{
tempHTML = "
<label class='errorlLabel error-alert error-alert-login' >{{Password cannot be
blank} }</label>";
tempHTML = Mustache.render (tempHTML,
SNGInternationalizationDatalInstance[viewObject.viewName]) ;
S ('#password') .after (tempHTML) ;
}

if($(".errorLabel") .length>0) {
if (SNGBrowserTestingMode) {
lelse(
return;

}

if (SNGBrowserTestingMode) {
if (SNGFastResumeEnabled) {

1if (NGCommonUtils.checkValue (NGAppDataUtils.getViewToBeResumed ())) {

NGDeviceEventManager.onResume () ;

SNGRootView.showView (NGAppDataUtils.getViewToBeResumed ()) ;
telse(
SNGRootView.showView ('dashboard') ;
}

lelse(
SNGRootView.showView ('dashboard') ;
}

return;

}

if (! SNGOfflineMode) {

spinner.showSpinner (SNGDataUtilsImpl.getTextValue ("Authenticating", "login"),
SNGDataUtilsImpl.getTextValue ("Please Wait", "commonUtilities"), true);

var self = this;

var responseUser = authenticateUser (ngUser) ;

if (responseUser) {

$NGjStorage.set ($SNGLoggedInUserID+" offlineLoginAttempts",0);

var key = getSecretKey ()

if (key) {

var bucList = getBUCTemplatelList (responseUser) ;
1f (buclList) {

Version: 6.1 NEMF Developer Guide n7

Writing solutions over NEMF

getMasterListJson (function (status) {

if (status) {

1f ($NGFastResumeEnabled) {

if (NGCommonUtils.checkValue (NGAppDataUtils.getViewToBeResumed ())) {
spinner.hideSpinner () ;

NGDeviceEventManager.onResume () ;

SNGRootView.showView (NGAppDataUtils.getViewToBeResumed ()) ;
telse(
spinner.hideSpinner () ;

SNGRootView.showView ('dashboard') ;

lelse(
spinner.hideSpinner () ;
SNGRootView.showView ('dashboard') ;

spinner.hideSpinner () ;
event.preventDefault () ;
return;
} else{
bootbox.alert (SNGDataUtilsImpl.getTextValue ("Authentication Failed", "login")):;
}
1)
} elsef
spinner.hideSpinner () ;
document.getElementById ("username") .value = "";
document.getElementById ("password") .value = "";
if (SNGIsSessionExpired) {
SNGIsSessionExpired = false;
return;
}
bootbox.alert (SNGDataUtilsImpl.getTextValue ("No BUCs are allowed for the User",
"login™")) ;
}
} else{
bootbox.alert (SNGDataUtilsImpl.getTextValue ("Authentication Failed", "login"));
}
}
telse(
var enteredPassword =
document.getElementById ("password") .value;
var enteredUser = document.getElementById ("username") .value;
SNGLoggedInUserPassword= enteredPassword;
SNGLoggedInUserID = enteredUser;

var numberOfOfflineAttempts =
SNGjStorage.get ($NGLoggedInUserID+" offlineLoginAttempts",0);
if (numberOfOfflineAttempts <= 2) {
1if (NGCommonUtils.checkValue (enteredUser) &&
NGCommonUtils.checkValue (enteredPassword)) {

Version: 6.1 NEMF Developer Guide 18

Writing solutions over NEMF

var ngUser =
NGAppDataUtils.getSavedNGUser (enteredUser) ;

if (ngUser && ngUser != null) {
var encryptedKey
NGAppDataUtils.getSecretKey (enteredUser) ;
var decryptedKey
tryf
decryptedKey
CryptoJdS.AES.decrypt (encryptedKey, enteredPassword, { format:
JsonFormatter }).toString(CryptoJdS.enc.Utf8);
}catch (err) {

null;

bootbox.alert (SNGDataUtilsImpl.getTextValue ("Incorrect Password", "login"));

}
if (NGCommonUtils.checkValue (decryptedKey)) {

NGAppDataUtils.setLoginStatus (true) ;
if (NGCommonUtils.checkValue (NGAppDataUtils.getViewToBeResumed ())) {

SNGRootView.showView (NGAppDataUtils.getViewToBeResumed ()) ;
lelse(
SNGRootView.showView ('dashboard') ;

$NGjStorage.set (enteredUser+" offlinelLoginAttempts", O0);
return;
lelse(

bootbox.alert (SNGDataUtilsImpl.getTextValue ("Incorrect Password", "login"));

$NGjStorage.set (enteredUser+" offlinelLoginAttempts",
SNGjStorage.get (enteredUser+" offlineLoginAttempts",0)+1);

if ($NGjStorage.get (enteredUser+" offlineloginAttempts") >2) {

bootbox.alert (SNGDataUtilsImpl.getTextValue ("Offline mode has been deactivated

due to three invalid attempts", "login"));
SNGOfflineMode = false;

}
telse(

bootbox.alert (SNGDataUtilsImpl.getTextValue ("Unknown User", "login"));
}

telse(

bootbox.alert (SNGDataUtilsImpl.getTextValue ("Please

fill all the fields", "login"));
}

telse(

Version: 6.1 NEMF Developer Guide

119

Writing solutions over NEMF

bootbox.alert (SNGDataUtilsImpl.getTextValue ("Offline mode

has been deactivated due to three invalid attempts", "login"));

}
}

viewObject)) ;

function authenticateUser (ngUser) {

SNGLoggedInUserID = document.getElementById ("username") .value;

SNGLoggedInUserPassword =

document.getElementById ("password") .value;

var ngUser = new NGUser (SNGLoggedInUserID,null,"1");
ngUser.userName = $NGLoggedInUserID;

ngUser.emailld = "neeraj.jl@newgen.co.in";
ngUser.password = $NGLoggedInUserPassword;

var localNgDevice = NGAppDataUtils.getNGDevice () ;
ngUser.devices.push (localNgDevice) ;
NGAppDataUtils.setNGUser (ngUser) ;

var identityProvider = NGIdentityProvider.instantiate ("od");

var authuser = identityProvider.authenticate (ngUser) ;
if (authuser != null) {
NGAppDataUtils.setLoginStatus (true) ;
return authuser;
}elseif (authuser == "response broken") {
returnfalse;
lelse(
document.getElementById ("username") .value = "";
document.getElementById ("password") .value = "";
spinner.hideSpinner () ;

bootbox.alert (SNGDataUtilsImpl.getTextValue ("Authentication

Failed", "login"));

NGCommonUtils.checkValue (NGAppDataUtils.getSecretKey (SNGLoggedInUserID))) {
var secretKey

returnfalse;

function getSecretKey () {

if (!

SNGConfigUtilsImpl.getEncryptionKeyFromServer () ;

if (secretKey == "response broken") {
return;
} elseif (secretKey == null) {
returnfalse;
} elsef
returntrue;
}
Version: 6.1 NEMF Developer Guide

120

Writing solutions over NEMF

function getBUCTemplateList (respUser) {
var templateManagerImpl = NGTemplateManager.instantiate ("CORE") ;
var bucArray =
templateManagerImpl.getBUCTemplatelistFromLocalStore () ;
if (bucArray == null) {
bucArray = templateManagerImpl.getBUCTemplatelListFromServer (respUser) ;
if (bucArray == "response broken") {

return;
} elseif (bucArray == null) {
returnfalse;
} else{
returntrue;

function getMasterListJson (callback) {
NGMasterManager.getMasterListJson (function (data) {
1f (! NGCommonUtils.checkValue (data)) {

var masterList = new Array();
masterList = SNGDataUtilsImpl.getMasterListFromServer () ;
if (masterList === "response broken") {

return;

}
1f (NGCommonUtils.checkValue (masterlList)) {
NGMasterManager.setMasterListJson (masterList) ;

S.each (masterlList, function (index, masterName) {
var masterObject = new NGMaster () ;
masterObject.masterName = masterName;
var masterData =

SNGDataUtilsImpl.getMasterDataFromServer (masterObject) ;

if (masterData === "response broken") {
return;

}

1f (NGCommonUtils.checkValue (masterData)) {

NGMasterManager.setMasterDataForMasterKey (masterObject.masterName, masterData) ;
callback (true) ;

} else{
callback (false) ;

b)) 2

} else{

Version: 6.1 NEMF Developer Guide 121

Writing solutions over NEMF

callback (false) ;

} else{
callback (false) ;
}
1)
}
}o
eventHandler : function (event, viewObject) ({
}
i
var modelBuilders = [ngclientframework.views.login.modelBuilder];
var eventHandlers = [ngclientframework.views.login.eventHandler];

Calling APIs from the Model

modelBuilder : function (viewObject) {

//alert ("click add") ;

S("#login") .click (S.proxy (function (event) {
var apiEndPointDetails = "1|4.0|IdentityProvider|default|authenticate";
var mod = "MODE SYNCHRONOUS";
var imeiNo = "911304252412527";

mwim
r

var anyotherDeviceUniqueld =
var rdbmsInstanceId = "";

//var organization = new NGOrganization (organizationId) ;
var device = new NGDevice (imeiNo, anyotherDeviceUniqueld,rdbmsInstanceld) ;

// f£illing the user information into user

SNGLoggedInUserID = document.getElementById ("username") .value;
SNGLoggedInUserPassword = document.getElementById ("password") .value;
var user = new NGUser (SNGLoggedInUserID, 1);

user.userName = $NGLoggedInUserID;
user.password = $NGLoggedInUserPassword;
//

var request = new NGAPIRequest (mod,apiEndPointDetails) ;
request.user = user;
request.packedResources.push (user) ;

request.device = device;

// call the API for authentication

var response = NGAPICallManager.callApi (request,callback);

var packedResources = JSON.stringify (response.packedResources) ;
if (packedResources.length > 25) {

Version: 6.1 NEMF Developer Guide 122

Writing solutions over NEMF

event.preventDefault () ;
this.showView ('testpage') ;
}

else {

}, viewObject)) ;

Form formats available in NEMF

NEMF provides two types of forms — Singlepane and Multipane.
To configure a Singlepane form, follow the below steps:

1. Set the value of $NGFormFormat = “SINGLEPANE" in ng-solution-configuration-

variables,js.

2. If you are configuring the form views on the server side, add an XML (as it is
already implemented) for the view with view markup and model.

3. If the form views are configured on the client side, create views and view scripts, as
already implemented, and load them whenever required.
Singlepane forms give the below look and feel:

Version: 6.1 NEMF Developer Guide 123

Account Opening

Writing solutions over NEMF

Version: 6.1

ClaimerForm

Application ID *

‘ Application ID

Salutation

--Select--

Gender*

Name *

Name

Date of Birth

Date of Birth

Marital Status *

--Select--

Contact Number

Contact Number

Email Id

‘ Email Id

Id Card Type*

‘ --Select--

Id Card Number*

SAVE

PREVIEW CANCEL

NEMF Developer Guide

124

Writing solutions over NEMF

To configure a Multipane form, follow the below steps:

1. Set the value of $NGFormFormat = “MULTIPANE" in ng-solution-configuration-
variables.js.

2. If you are configuring the form views on the server side you need to add more
than one XML for one form. One XML will be of the parent and others of the
sections or child sections in the form. For example, if you have 3 sections in the
form, namely, Basic Details, Applicant Details, and Services Required, you will have
to configure four XMLs for the parent, basic details, applicant details, and services
required.

W

Similar is the case if you want to configure a form on the client side.
4. The nomenclature for the forms if configuring on the client application is as
mentioned below:
e for parent section — _<bucName>_<formName>_parentSection_view.js and ng-
<bucName>_<formmName>_parentSection-view-script.js
e for 1st child section — _<bucName>_<formName>_childSectionl_view.js and ng-
<bucName>_<formName>_childSectionl-view-script.js
e for 2nd child section — _<bucName>_<formName>_childSection2_view.js and
ng-<bucName>_<formName>_childSection2-view-script.js
e for nth child section — _<bucName>_<formName>_childSection<n>_view.js and
Nng-<bucName>_<formName>_childSection<n>-view-script.js
5. The nomenclature of the XMLs, if configuring on the server side, is as mentioned
below:
e for parent section — _<bucName>_<formName>_parentSection_4.5.xml
e for 1st child section — _<bucName>_<formmName>_childSection1_4.5.xm]
e for 2nd child section — _<bucName>_<formName>_childSection2_4.5.xml
e for nth child section — _<bucName>_<formName>_childSection<n>_4.5xml
Multipane forms give the below look and feel:

Version: 6.1 NEMF Developer Guide 125

Writing solutions over NEMF

€« Account Opening ClaimerForm

//*‘\\ /”'\\ f/"_‘\ /
2)— (B —E — & ——
Ny o 4 N o \\‘ o

Applicant Details U o

--Select--

Writing solutions over NEMF

Version: 6.1 NEMF Developer Guide 127

Writing solutions over NEMF

€« Account Opening ClaimerForm

f e (=
(—(—@—E—E—(=)

Service Required

ATM Cum Debit Card Details

--Select--

Writing solutions over NEMF

0 Currently, only one Singlepane form is supported. If you want to have multiple forms in your app, then use the
multipane forms only.

Creating platform specific builds for
mobile platforms

Perform the below steps to create a platform-specific build:

Create the PhoneGap project for the selected platform.
Create a folder in the project with the name asset.
Create a folder www inside the asset folder.

Copy all the files and folders from web content into www.

AN -

Visit https://build.phonegap.com/ for more help.

Version: 6.1 NEMF Developer Guide 129

https://build.phonegap.com/

	Developer Guide
	Preface
	Revision history
	About this guide
	Intended audience
	Related documents
	Documentation feedback

	Introduction
	NEMF overview
	NEMF server architecture
	Server architecture diagram
	Server binary distribution

	NEMF client architecture
	Client code distribution
	Client architecture diagram

	Framework components at high level
	Basic entities
	Framework interfaces
	Mandatory configuration
	Client server interaction
	Interaction object
	Interaction model
	API endpoint URL format
	Callback URL format

	Interaction monitoring
	Logging

	Client side component

	Writing solutions over NEMF
	Server side
	Defining server interface (abstractions)
	Writing concrete implementations
	Pushing data to the client asynchronously
	How the solution can choose to delay a response
	Developing solution Plug-in
	Implementing a SolutionInterface
	Implementing and exposing factory
	Implementing and exposing SolutionEventHandlers
	Creating solutions.xml

	Sample organization.xml
	Sample cloud.xml
	REST API web app
	Web app structure
	Folder structure
	Web.xml

	Third party libraries

	Client side
	NGOpenWebDesktopBase4.0 folder structure
	NGOpenWebPhonegapBase4.0 folder structure
	Client custom code overview
	Design HTML templates
	HTML view [‘_login_view.js]
	Preview

	Implementing a Model [‘ng-login-view-script.js’]
	Calling APIs from the Model
	Form formats available in NEMF
	Creating platform specific builds for mobile platforms

