
 

 

 

 

 

 

 

 

 

NewgenONE OmniDocs RMS 

Newgen Enterprise Products Containerization 

Guide for OpenShift 

Version: 4.0 SP1 
 

 

 

 

 

 
Newgen Software Technologies Ltd. 

This document contains propriety information of NSTL. No part of this document may be reproduced, stored, copied, or 

transmitted in any form or by any means of electronic, mechanical, photocopying, or otherwise, without the consent of 

NSTL.  



NewgenONE OmniDocs RMS Newgen Enterprise Product Containerization Guide for OpenShift Version: 4.0 SP1 Page 1 

 

 

Table of contents 
1 Preface ...................................................................................................................................................2 

1.1 Revision history ........................................................................................................................................................ 2 
1.2 About this guide ....................................................................................................................................................... 2 
1.3 Intended audience .................................................................................................................................................... 2 
1.4 Related documents ................................................................................................................................................... 2 
1.5 Documentation feedback ......................................................................................................................................... 3 
1.6 Third-party information ............................................................................................................................................ 3 

2 Containerization of Newgen Enterprise Products .....................................................................................4 
2.1 Advantages of docker containerization .................................................................................................................... 4 
2.2 Deliverables .............................................................................................................................................................. 5 

2.2.1 Docker images of OmniDocs ................................................................................................................................ 5 
2.3 Deployment architecture ......................................................................................................................................... 6 

2.3.1 OmniDocs Vanilla deployment architecture ........................................................................................................ 6 
2.4 Tools and technologies ............................................................................................................................................. 7 
2.5 Kubernetes autoscaling ............................................................................................................................................ 9 
2.6 Logging architecture ............................................................................................................................................... 11 
2.7 Container security .................................................................................................................................................. 12 
2.8 CI/CD pipeline ......................................................................................................................................................... 13 

2.8.1 CI/CD pipeline of base products ........................................................................................................................ 14 
2.8.2 CI/CD pipeline of custom code .......................................................................................................................... 15 
2.8.3 CI/CD pipeline of product’s hotfix ..................................................................................................................... 16 
2.8.4 Deployment changes against file types ............................................................................................................. 17 
2.8.5 Deployment downtime ...................................................................................................................................... 18 
2.8.6 Docker image management for rollbacks .......................................................................................................... 18 

 

 

 



NewgenONE OmniDocs RMS Newgen Enterprise Product Containerization Guide for OpenShift Version: 4.0 SP1 Page 2 

 

1 Preface 
This chapter provides information about the purpose of this guide, details on the intended audience, 

revision history, and related documents for OmniDocs RMS Containerization. 

 

1.1 Revision history 
Revision date Description 

April 2024 Initial publication 

 

1.2 About this guide 
This guide describes the containerization approach for Newgen Enterprise products, which provides 

the details of the container-based deployment architecture and container-based DevOps pipeline for 

OmniDocs RMS on OpenShift Container Platform. 

 

NOTE: 

To ensure you are referring to the latest and most recent revision of this guide, download it from one of the following 

locations: 

• Newgen Internal Doc Portal, if you are a Newgen employee. 

• Newgen Partner Portal, if you are Newgen partner. 
 

 

1.3 Intended audience 
This guide is intended for System Administrators, developers, and all other users who are seeking 

information on the OmniDocs Container Architecture and DevOps Pipeline to manage deployments. 

The reader must be comfortable understanding the computer terminology. The reader must have 

administrative rights for deployment and configuration. 

 

1.4 Related documents 
The following documents are related to the OmniDocs Docker Document: 

• OmniDocs RMS 4.0 SP1 Configuration and Deployment Guide 

• OmniDocs RMS 4.0 SP1 Docker Containers Hotfix Deployment Guide 

• OmniDocs RMS 4.0 SP1 Newgen Enterprise Product Containerization Guide 

• OmniDocs RMS 4.0 SP1 Docker Containers Custom Code Deployment Guide 

• OmniDocs RMS 4.0 SP1 Release Notes 

 

  

https://newgenindia.sharepoint.com/sites/NewgenProductDocumentation
https://partners.newgensoft.com/


NewgenONE OmniDocs RMS Newgen Enterprise Product Containerization Guide for OpenShift Version: 4.0 SP1 Page 3 

 

1.5 Documentation feedback 
To provide feedback or any improvement suggestions on technical documentation, write an email to 

docs.feedback@newgensoft.com. 

 

To help capture your feedback effectively share the following information in your email. 

• Document name 

• Version 

• Chapter, topic, or section 

• Feedback or suggestions 

 

1.6 Third-party information 
This guide contains third-party product information about configuring OpenShift Container Platform  

and Jenkins CICD Pipeline for Container Deployment on OpenShift. Newgen Software Technologies Ltd 

does not claim any ownership of such third-party content. This information is shared in this guide only 

for the convenience of our users and could be an excerpt from the OpenShift documentation. For the 

latest information on configuring the OpenShift Container Platform and Jenkins CICD Pipeline refer to 

the respective official documentation.  

mailto:docs.feedback@newgensoft.com


NewgenONE OmniDocs RMS Newgen Enterprise Product Containerization Guide for OpenShift Version: 4.0 SP1 Page 4 

 

2 Containerization of Newgen Enterprise Products 
The containerization support is enabled for Newgen's flagship product OmniDocs RMS on OpenShift 

Container Platform. Newgen has isolated the product suite’s application modules that must be 

deployed in a separate docker container to enable independent scalability for each of these 

components or modules. Newgen product suite’s web components and EJB components are isolated 

for deployment in separate Docker Container Instances. Web components are deployed on the 

underlying web server JBoss WebServer 5.7.x. EJB components are deployed on the underlying 

application server JBoss EAP 7.4.x. 

 

2.1 Advantages of docker containerization 
The key advantages are as follows: 

• Reduce time and effort in environment configuration — With Docker containers, you can 

reduce the time and effort in environment configuration, you don't need to bother about the 

installation parts. Whenever you want to use these products, pull the docker images and run 

them along with some configuration. Also, Containers are immutable by design so no need to 

worry about corrupted VMs. 

• Consistency across the environments (Dev, UAT, Production, and so on) — Docker container 

provides environment consistency which means it never faces such issues that this application 

is working on a Dev environment, but it is not working on UAT and stage environment due to 

O.S updates or patches. 

• Auto Scaling of Containers — Scaling containers is far faster and easier than deploying 

additional VMs. Docker containers are auto-scaled up and scaled down depending on CPU 

utilization and memory consumption.  

• Easy distribution and portability — As our application and its dependencies all are bundled 

inside the Docker image then it becomes easy to distribute our applications using the container 

registry. 

• Maintain the Liveness of applications running inside a container — Docker containers have 

healing power, if an application running inside the container gets down due to any reason or 

becomes unresponsive then Kubernetes auto-restarts that application inside the container. 

• Seamless deployment of updates (Rolling Deployment) — Deploying updates as a Docker 

image is far faster and very efficient. Whenever you push new images to the container registry, 

Kubernetes 1st of all creates new containers to make it up and running once new containers 

become fully functional after that Kubernetes start deleting the existing containers. In such a 

case, the end-user never faces any downtime even if the user session also not gets expired, and 

the latest updates get deployed. 



NewgenONE OmniDocs RMS Newgen Enterprise Product Containerization Guide for OpenShift Version: 4.0 SP1 Page 5 

 

2.2 Deliverables  
The deliverables contain the Product docker images for initial deployment. Newgen has isolated the 

product suite into multiple Docker containers to enable the independent scalability of each Docker 

container. This separation is done based on the product's usability. At a broad level, Web components 

and EJB components are isolated for deployment in separate container Instances. Web components 

are deployed on the underlying web server JBoss WebServer 5.7.x. EJB components are deployed on 

the underlying application server JBoss EAP 7.4.x. Newgen releases multiple Docker images for the 

different product suites along with some configuration files for data persistence, YAML files for 

deployment, and some documentation for end-to-end configurations and deployments. 

 

2.2.1 Docker images of OmniDocs RMS 
There’s a segregation of product suite into multiple Docker containers to enable the independent 

scalability of each Docker container. This segregation is done based on the product's usability. At the 

broad level, the OmniDocs Services container consists of five different add-on services of OmniDocs RMS. If 

there is a requirement, you can split them into separate containers.  

EasySearch container consists of Apache Manifold which is freeware software.  

If OmniScan Web components are required for scanning services, then it also constitute a separate Docker 

instance. 

OmniDocs SMS (Storage Management System) service is required to store the PN files. PN files are 

encrypted files that contain all the added/uploaded/scanned documents by Newgen products. 

 

  

Docker Image Name Docker Image Size 

OmniDocs Web 893 MB 

OmniDocs Web Service 541 MB 

OmniDocs EJB 701 MB 

OmniDocs Services 1.15 GB 

EasySearch(Apache Manifold only) 741 MB 

TEM or FTS 408 MB 

OmniScan Web 498 MB 

OmniDocs SMS 354 MB 

SharePointAdapter 176 MB 

OmniDocsWopi 315 MB 



NewgenONE OmniDocs RMS Newgen Enterprise Product Containerization Guide for OpenShift Version: 4.0 SP1 Page 6 

 

2.3 Deployment architecture 
This section describes the deployment architecture of OmniDocs RMS Docker Containers. 

 

2.3.1 OmniDocs RMS Vanilla deployment architecture   
This section describes the deployment of the vanilla flavor of OmniDocs RMS.  

 

 
Figure 2.1 

 

• In this architecture, all user requests, either coming from end-users, mobile users, admin users 

or portal users comes to Load Balancer, which is internally managed by the OpenShift Ingress 

controller. An ingress controller is an object running inside the Openshift cluster that is used to 

manage the host-based routing rules.  

For example, you can set the host-based routing rules like if the URL is 

omnidocs.apps.newgenopenshiftcluster.newgensoftware.net then the ingress controller 

redirects the user request to OmniDocs RMS WEB containers. If the URL is 

omnidocswebservice.apps.newgenopenshiftcluster.newgensoftware.net then the ingress 

controller redirects the user request to the OmniDocs RMS WEB container. 



NewgenONE OmniDocs RMS Newgen Enterprise Product Containerization Guide for OpenShift Version: 4.0 SP1 Page 7 

 

• Now, there is a separate container for web services that can directly connect with the EJB's 

present in another container. In case, users want to connect their business or productivity 

applications with OmniDocs, they can call out these web services directly (which are now 

deployed in separate container). Web server components and App server components are still 

deployed in separate containers for accessing OmniDocs through the GUI. 

• Here, each Docker image is running in HA mode, one container in each availability zone, and 

both the containers is running in Active-Active mode so that they can serve the user requests at 

the same time and manage the load properly. All the containers are also running with auto-

scaling enabled so that whenever user requests increase drastically, new pods can auto-scaled 

up and start serving the user requests.  

• Here, a separate Docker container is created for OmniDocs Addon services like EasySearch, FTS, 

Alarm Mailer, and all these services is connected to the OD RMS EJB container. Additionally, OD 

RMS EJB is connected to the database servers.  

• In this architecture, the database is running in Active-Passive mode and sync the data in real-

time. Thus, primary instance is going down then secondary instance can take place and start 

serving the requests meanwhile you can fix the issues on primary nodes.  

• OpenShift Container Platform (OCP) works for container orchestration.  

• Here, the NAS Server or NFS Server is used for the Storage layer. It is used to store the PN files. 

A PN File is nothing but an encrypted file that contains all the added, uploaded, or scanned 

documents by Newgen products.  

• The NAS Server is also used to persist the product's configuration and log files outside the 

container because these are dynamic and modified configuration files or newly created log files 

that cannot be recovered once a container is terminated due to any reason. 

• To store the Docker images in a private repository, RedHat Quay Registry is used. However, you 

can use other Image repositories as well like Azure Container Repository or DockerHub.  

• For the product's web session persistence, Redis Cache is used.  

• For end-to-end CICD Pipeline, Jenkins is used.   

 

2.4 Tools and technologies 
The following tools and technologies are used for this containerization approach: 

• Container Orchestration — OpenShift Container Platform 

OpenShift Container Platform is a popular enterprise-grade container management platform 

developed by Red Hat. It is built on top of open-source technologies, primarily Kubernetes, and 

provides a comprehensive set of tools and features for deploying, managing, and scaling 

containerized applications and services. OpenShift uses Kubernetes as its core container 

orchestration engine. This means it provides features for deploying, scaling, load balancing, and 



NewgenONE OmniDocs RMS Newgen Enterprise Product Containerization Guide for OpenShift Version: 4.0 SP1 Page 8 

 

managing containerized applications, making it easier to manage complex microservices 

architectures. 

• WorkerNode Host OS — RHEL CoreOS (RHCOS) or RHEL 8.4/8.5 

Here, RedHat CoreOS or RHEL 8.4 or RHEL 8.5 can be used as the OpenShift worked node. 

Worker node is used to run the containerized applications. Every Kubernetes cluster has at least 

one worker node. 

• Container OS — Alpine  

Container OS is a lightweight, optimized operating system that is used to run Docker containers 

and bundled inside the Docker images. It defines the file system structure of a container. 

For example, Ubuntu, CentOS, Alpine, Windows, RHEL, and so on. In Newgen, the Alpine is used 

whose size is about 5 MB only. If there is some special requirement, the Docker images are built 

with another container OS on-demand basis. 

• Docker Image Registry — RedHat Quay Registry 

RedHat Quay Registry is used to store the Product’s Container Images. 

  

• AppServer — JBossEAP 7.4.x 

JBoss EAP 7.4.x deploys the Newgen Product’s EJB components. 

• WebServer — JBossWebServer 5.7.x 

JWS 5.7.x is to deploy the Newgen Product’s WEB components. 

• JDK — OpenJDK 1.17.x 

Inside the Docker images, OpenJDK 1.17.x is bundled. If there is some special requirement, then 

you can build the Docker images with Oracle JAVA on-demand basis. 

• Database — Oracle 19C 

Newgen Products support three database servers: Microsoft SQL Server, Oracle, and 

PostgreSQL. The supported database versions for products are available in the Product Support 

Matrix. 

• PN Files Storage Server — NAS Storage or NFS Storage 

PN files are encrypted files that contain Newgen products added, uploaded, and scanned 

documents. Here, NAS Server or NFS Server is used for the storage layer.  

• Log Files Persistence — NAS Storage or NFS Storage 

All the files created inside a container are stored on a writable container layer. This means that 

the data doesn’t persist when that container no longer exists or is terminated due to any 

reason, and it can be difficult to get the data out of the container if another process requires 

the same. Thus, to persist these types of data NAS Server or NFS Server is used. 

• Configuration Files Persistence — NAS Storage or NFS Storage 

Same as log files, NAS Server or NFS Server is used to persist the configuration files.  

• Load Balancer —Ingress Controller 



NewgenONE OmniDocs RMS Newgen Enterprise Product Containerization Guide for OpenShift Version: 4.0 SP1 Page 9 

 

Here, OpenShift Ingress controller is used to route the incoming user requests to the backend 

containers. An ingress controller is an object running inside the Kubernetes cluster that is used 

to manage the host-based routing rules. 

• Session Persistence —Redis Cache 

Redis Cache is an easy-to-use, high-performance, in-memory data store. It offers a mature, 

scalable, open-source solution for delivering sub-millisecond response times making it useful as 

a cache or session store. 

 

 

2.5 Kubernetes autoscaling 
In Kubernetes, auto-scaling happens at two-level depending on multiple parameters like CPU utilization, 

memory consumption, and so on. 

1. Pod level — This is controlled by Horizontal Pod Autoscaling (HPA) or Vertical Pod Autoscaling 

(VPA).  

i. Horizontal Pod Autoscaler (HPA) automatically scales the number of pods depending on CPU 

utilization and memory consumption. Like if CPU utilization goes more than 80% then a new 

pod automatically gets launched and is mapped to the load balancer. Below are some points 

regarding HPA’s default behavior:  

• The default HPA check interval is 15 seconds. 

• HPA waits for 3 minutes after the last scale-up events to allow metrics to stabilize. 

• HPA waits for 5 minutes from the last scale-down event to avoid auto scaler thrashing. 

• In HPA, the autoscale works on the resource's request parameter instead of the resource's 

limit parameter. 

• HPA can be configured on CPU utilization, memory utilization, or both with an OR condition.  

ii. Vertical Pod Autoscaler (VPA) — just like HPA, a Vertical pod autoscaler does not add more 

replicas but increases the number of system resources available to the particular pod. It 

automatically adjusts the CPU and memory reservations for the pod. VPA gives some 

recommendations based on the data collected from the matrix server and updates the existing 

pod with recommended values.  

2. Cluster or Node level — It is also known as Cluster Autoscaler. It automatically adjusts the number 

of nodes in your cluster when pods fail to launch or are pending due to lack of resources or when 

nodes in the cluster are underutilized and their pods can be rescheduled onto other nodes in the 

cluster. In other words, Cluster Autoscaler adds nodes to a cluster whenever it detects pending 

pods that cannot be scheduled due to resource shortages and delete nodes from a cluster 

whenever the utilization of a node falls below a certain threshold defined by the cluster 

administrator. Thus, it automatically scales up or down depending on resource utilization.  

 



NewgenONE OmniDocs RMS Newgen Enterprise Product Containerization Guide for OpenShift Version: 4.0 SP1 Page 10 

 

NOTE: 

However, Cluster Autoscaler is primarily associated with cloud-based Kubernetes deployments. It can also be used with 

OpenShift running on bare metal hardware or VMWare. But there are some important considerations and steps to set up 

Cluster Autoscaler in such an environment. Please contact RedHat team for more information. 

 

  



NewgenONE OmniDocs RMS Newgen Enterprise Product Containerization Guide for OpenShift Version: 4.0 SP1 Page 11 

 

2.6 Logging architecture 
This section explains the logging architecture. 

 

 
Figure 2.2 

 

• All the files are created inside a container are stored on a writable container layer. This means 

that the data doesn’t persist when that container no longer exists, and it can be difficult to get 

the data out of the container if you need it later. Thus, to persist these types of data, use NAS 

storage or NFS storage. It helps to share data across multiple nodes and pods. 

• Since the product’s log files are dynamic in nature and are created at runtime so they must be 

kept outside the container. Therefore, NAS storage is used to persist in the Newgen Product’s 

log files.  

• To persist the data in NAS storage, there’s a concept of PV or PVC (Persistence Volume or 

Persistence Volume Claim):  



NewgenONE OmniDocs RMS Newgen Enterprise Product Containerization Guide for OpenShift Version: 4.0 SP1 Page 12 

 

➢ Persistence Volume: Persistent Volume (PV) is a piece of storage in the cluster that has 

provisioned using Storage Classes. It contains the NAS server IP address and share path 

that is already created on the NAS server. It is also used to set the access permission on 

NAS share path using accessModes attribute. 

➢ Persistence Volume Claim: A PersistentVolumeClaim (PVC) is a request for storage by a 

user. It is similar to a Pod. Pods consume node resources and PVCs consume PV 

resources. Pods can request specific levels of resources (CPU and Memory). Claims can 

request specific size and access modes (for example, they can be mounted 

ReadWriteOnce, ReadOnlyMany or ReadWriteMany). 

• So, all the product’s logs created inside the containers can be claimed by the PVC in some 

predefined folder structure.  

For example, container1’s product logs are stored inside the container1_logs folder on a worker 

node, and container2’s product logs are stored inside the Container2_logs folder on a worker 

node and so on. 

• Further, all the log folders created, is mounted to NAS server so that whenever a Pod goes 

down, our product’s logs must always be available in NAS server. Whenever it is required, you 

can fetch it from there.  

• Mounted product’s logs are in sync in real-time. So, whenever the product’s logs are generated 

inside the container, these logs are available in NAS server as a persistence volume at the same 

time. There is no delay. 

 

2.7 Container security 
The Container Images are as follows:  

• Using Secure Images — Since you are bundling numerous third-party libraries as dependencies, 

these dependencies contain some vulnerabilities. Also, Docker images are created using nested 

Docker images at multiple layers and any parent Docker image may contain vulnerabilities. So, 

it becomes necessary to scan all the Docker images against vulnerabilities. As all the Docker 

images are stored inside the RedHat Quay Container Registry. 

RedHat Quay image scanning gets enabled by default. Whenever you push an image to the 

container registry, Security Centre automatically scans it and then checks for known 

vulnerabilities in packages or dependencies defined in the file. Quay uses the Common 

Vulnerabilities and Exposures (CVEs) database from the open-source Clair project and provides 

a list of scan findings. 

• No container must be running with root privileges — The security context RunAsNonRoot is 

configured for all the containers in the deployment manifest file. This ensures that the 

application must not be running with administrator or root privileges inside the container. 

 



NewgenONE OmniDocs RMS Newgen Enterprise Product Containerization Guide for OpenShift Version: 4.0 SP1 Page 13 

 

Container Runtime Environments are as follows:  

• Restricted communication between containers — In a Kubernetes cluster, containers can 

communicate with any other container running in the same cluster. However, containers need 

to communicate with each other to accomplish their goals, but they must not communicate 

with all the running containers. The reason is that if a hacker gets access to one container, then 

that hacker can communicate with any other container as well. So, allow containers to 

communicate to only those containers that are required to minimize the attack surface. To 

handle this case, the Network Security Policy is implemented between the containers by 

defining some ingress and egress rules. 

• ServiceMesh — ServiceMesh is a dedicated infrastructure layer for managing secure 

communication between containers. It consists of a set of network proxies deployed alongside 

application code, which intercept and manage traffic between containers.  

Orchestrators:  

• By using Kubernetes for container orchestration, it automates many of the tedious tasks 

required to deploy containerized apps, but it does not manage container security. However, it 

can enforce role-based access control policies and network policies. 

For example, it can restrict the ability of a container to access resources on the host server. 

 

Container Registry:  

• Container registry providers already provide security on the container registry. You cannot push 

or pull any Docker images without authorization.  

• A private container repository is available on the cloud, but it is accessible through whitelisted 

users only.  

• Vulnerability scanning is enabled to scan the pushed Docker images.  

 

 

2.8 CI/CD pipeline 
The Build Pipeline (aka Continuous Integration) and Release Pipeline (aka Continuous Deployment) are 

separated into two parts. Build Pipeline and Release Pipeline both are done through the Jenkins server 

which can be installed on an on-premises machine or a bastion server. In this architecture, three stages 

are created, Dev, UAT, and Production, and in each stage, deployment is quite different. You can have 

some more stages depending on the requirements. This document describes the configuration of the 

Jenkins Release Pipeline for container deployment on the OpenShift Container Platform 

 

  



NewgenONE OmniDocs RMS Newgen Enterprise Product Containerization Guide for OpenShift Version: 4.0 SP1 Page 14 

 

2.8.1 CI/CD pipeline of base products 
This section describes the CI/CD pipeline for base products. 

 

 
Figure 2.3 

 

• The Newgen representative builds the product’s base container images on the company’s on-

premises servers using Jenkins. 

• As soon as the Dev team commits the code to the source code repository, the Jenkins pipeline gets 

triggered. It pulls the code then compiles them and prepares the build artifacts as well as creates 

container images and pushes the newly created container images to the RedHat Quay Registry. 

• As soon as any container image is pushed to the RedHat Quay Registry, Jenkins Release Pipeline 

triggers the deployment to the Dev environment. Here, you can configure the performance testing 

as well as security testing of the application. In Addition, you can perform manual testing as 

required. 

• UAT and Production deployments are based on approval and are available on-demand. To deploy 

to the UAT/Production environment, you need to trigger the UAT/Production deployment. Upon 

deployment trigger, an approval mail is sent to the project manager or the concerned team. As 

soon as the project manager or concerned team approves the go-ahead, UAT/Production 

deployment gets started. 

 



NewgenONE OmniDocs RMS Newgen Enterprise Product Containerization Guide for OpenShift Version: 4.0 SP1 Page 15 

 

2.8.2 CI/CD pipeline of custom code 
This section describes the CI/CD pipeline of custom code. 

 

 
Figure 2.4 

 

• For initiating custom code deployment, the Implementation team pushes the compiled custom 

code to the artifacts repository. An artifacts repository can be SVN, FTP, a Network drive, and 

so on.  

• After that Jenkins pulls the compiled custom code from the artifacts repository and pulls the 

latest container image. Then, it creates a new container image after merging the custom code 

changes and pushes the newly created container images to the RedHat Quay Registry. 

• In this architecture, the operation team have full access to initiate the build pipeline configured 

on the Jenkins server. The Implementation team does not have access to this Jenkins server. 

However, a common artifacts repository is shared for both teams. 

• As soon as any container image is pushed to the RedHat Quay Registry, Jenkins Release Pipeline 

triggers the deployment to the Dev environment. 

• UAT and Production deployments are based on approval and are available on-demand. To 

deploy to the UAT/Production environment, you need to trigger the UAT/Production 

deployment. Upon deployment trigger, an approval mail is sent to the project manager or the 



NewgenONE OmniDocs RMS Newgen Enterprise Product Containerization Guide for OpenShift Version: 4.0 SP1 Page 16 

 

concerned team. As soon as the project manager or concerned team approves the go-ahead, 

UAT/Production deployment gets started. 

 

2.8.3 CI/CD pipeline of product’s hotfix 
This section describes the CI/CD pipeline of the product’s hotfix. 

 

 
Figure 2.5 

 

 

To deploy the Newgen product’s hotfix, follow the below steps:  

1. Pull the product’s base images or latest images that are already deployed in the current 

environment, from the container registry.  

2. Update the hotfix files in the earlier running container images and create new container 

images. The deployment structure of these hotfix files (Dockerfile) is shared along with the 

hotfix files, which indicates how container images require update. 

3. Push the newly created images to the container registry. 

4. As soon as any container Image is pushed to the RedHat Quay Registry, Jenkins Release Pipeline 

triggers the deployment to the Dev environment. 

5. UAT and Production deployments are based on approval and are available on-demand. To 

deploy to the UAT/Production environment, you need to trigger the UAT/Production 

deployment. Upon deployment trigger, an approval mail is sent to the project manager or the 



NewgenONE OmniDocs RMS Newgen Enterprise Product Containerization Guide for OpenShift Version: 4.0 SP1 Page 17 

 

concerned team. As soon as the project manager or concerned team approves the go-ahead, 

UAT/Production deployment gets started. 

 

2.8.4 Deployment changes against file types 
In our products, majorly there are four types of files:  

• Deployable files (*.war, *._ejb.ear) 

• Dependent Libraries (*.jar) 

• Configuration Files (*.ini, *.xml) 

• Database Scripts 

Deployable files and libraries can be merged inside the Docker container as there are no dynamic 

changes in these types of files.  

But as configuration files are dynamic so they must be kept outside the container.  

For which the volume persistence is used and mapped to external disk storage like NAS server. So, 

whenever configuration changes are found in a custom code or product’s hotfix, update the 

configuration files located at external disk storage along with updating Docker images.  

For the database scripts, provide the DB scripts, which can be manually executed through Database 

Client software. However, if this operation requires automation, configure the DB script execution in 

Jenkins. In that case, create DB script execution job types in Jenkins. 

 

  



NewgenONE OmniDocs RMS Newgen Enterprise Product Containerization Guide for OpenShift Version: 4.0 SP1 Page 18 

 

2.8.5 Deployment downtime 
Deployment downtime is dependent on the types of binaries used in custom code or hotfixes that 
need to be deployed. If changes are in deployable files or into dependent libraries, then downtime is 
not required, as Kubernetes provides the rolling deployment feature. In this case, deploy the latest 
Docker image, Kubernetes first launch the new container with the latest updated Docker image, make 
it runnable and when the latest container is ready to serve the requests, it starts deleting the existing 
container.  
But, if changes required are in configuration files and database scripts then some downtime is required 
to update the configuration files and to execute the DB scripts, in the persistence mapped location. 
For the Production environment, must take the requisite downtime to ensure that the product is 
working fine. To ensure that recheck the prerequisites and perform the smoke testing. Also, perform 
some regression testing before making it live. 
 

2.8.6 Docker image management for rollbacks 
For Docker Image management, two tag creation is recommended for each Docker image through 

Jenkins while building the Docker Images, before pushing them to the container registry. 

For Example,  

• omnidocs11.0web: sp1 

• omnidocs11.0web: sp1 -build10 (where build-10 is the build pipeline number) 

 

This means that you always have a copy of the Docker image of each build pipeline in the container 

registry so that whenever you require to rollback the current deployment, you can use the previous 

build pipeline number tag – Docker Image for rolling back the deployments. 


	Newgen Enterprise Product Containerization Guide for OpenShift
	1  Preface
	1.1 Revision history
	1.2 About this guide
	1.3 Intended audience
	1.4 Related documents
	1.5 Documentation feedback
	1.6 Third-party information

	2 Containerization of Newgen Enterprise Products
	2.1 Advantages of docker containerization
	2.2 Deliverables
	2.2.1 Docker images of OmniDocs RMS

	2.3 Deployment architecture
	2.3.1 OmniDocs RMS Vanilla deployment architecture

	2.4 Tools and technologies
	2.5 Kubernetes autoscaling
	2.6 Logging architecture
	2.7 Container security
	2.8 CI/CD pipeline
	2.8.1 CI/CD pipeline of base products
	2.8.2 CI/CD pipeline of custom code
	2.8.3 CI/CD pipeline of product’s hotfix
	2.8.4 Deployment changes against file types
	2.8.5 Deployment downtime
	2.8.6 Docker image management for rollbacks




